Advanced Acoustics

R.J. Marks II Class Notes

Rose-Hulman Institute of Technology (1973)

FOR NEXT MONDAY

$$
\begin{aligned}
& 1,2,4,6,8^{*}, 9 \\
& \frac{E^{\prime}}{A}=\frac{E}{A}
\end{aligned}
$$

By=

TRESS $=1 / a_{0}{ }^{\circ}$

$$
\begin{aligned}
& \frac{r_{0}}{a_{0}(1+6) \sqrt{2}} \\
& \rightarrow 1 / y a_{0}^{2}(1+b) \sqrt{2} / a_{0} / \sqrt{2} \\
& \frac{1 / a_{0}^{2}}{a}=\frac{Y}{2(1+0)}=C
\end{aligned}
$$

$$
\begin{aligned}
& 1+\mathscr{L}_{0}=\mathrm{C} \\
& m=M A S: P=D L N E T Y \\
& \leq 5=0=-m g+\rho\left(x \omega_{0} h_{0}\right) g+1 x=0 \\
& \begin{aligned}
\Rightarrow F_{x} & =m g \rho_{g}\left(x \omega_{0}\right) g \\
& =p \text { whog }\left[\log _{0} x\right]
\end{aligned} \\
& S_{X x}=p \delta\left[D_{0}-x\right] \\
& \frac{1 \Delta x \mid}{x}
\end{aligned}
$$

$$
\begin{aligned}
& C_{x x}=\lim _{x \rightarrow 0} \frac{\Delta x-\Delta x}{\Delta x} \\
& \begin{array}{l}
\Delta X_{s}=\Delta E_{Y}+E(x+\Delta x)-E(x) \\
E_{x}=\Delta x
\end{array} \\
& \left.E_{x x}=d E_{x}=\frac{1}{Y} S_{x x}=\frac{1}{Y} S_{0}\left(D_{0}-x\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \sum F_{x}=0 \quad \sum_{W} F_{y}=0 \quad 7_{z}=0 \\
& F_{x}=0 \\
& \frac{W}{2}+F_{Y}=0 \\
& F_{r}=(W / 2) \text {. } \\
& \begin{array}{r}
=-\frac{w}{2} x+m=0 \\
\Rightarrow m=\frac{w}{2} x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(R+r) \Delta \phi-R \Delta \phi}{R \Delta \phi}=\frac{r}{R}(\operatorname{sTRA} N) \\
\Rightarrow & R=\frac{1}{R} \frac{d F_{x}}{\omega d x} \Rightarrow d F_{x}=\frac{\text { Yrudr }}{R}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore m^{2} \int_{0}^{h / 2} z+r z a d r / R
\end{aligned}
$$

$9-12-72$
$\xrightarrow{x}+8 x-1$

$$
\begin{aligned}
& \frac{r}{R}=\frac{1}{x w} d_{\text {yrw }} d r \\
& \Rightarrow d F_{x}=\frac{Y r w}{R} d r
\end{aligned}
$$

$$
\begin{aligned}
& n=\int_{0}^{m / 2} 2 y r-w d r
\end{aligned}
$$

FROM CALCOLUS

$$
A=\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}{d y d x}
$$

FOR smat $\frac{d x}{d x}$ (AS mTAUS CASE)

$$
\begin{aligned}
& R=\left(d^{2} x^{2}\right)^{-1} \\
& \Rightarrow m=\frac{Y \omega h^{2}}{12} \frac{d^{2} y}{d x^{2}} \text { ann } \quad m=\frac{w}{2} x \\
& \therefore \frac{M}{2 x}=\frac{Y W^{2}}{2} d x^{2} \\
& \Rightarrow \frac{d y^{2}}{d x x^{2}}=6 \operatorname{HW}^{2} x \\
& 1260 \frac{d x}{d x}=\frac{3 W}{W}+x^{2}+Q_{1} \\
& Y=T w^{w} X^{2}+C X+C= \\
& a_{x} y^{2}, d y=0, a x=0, y=0 \\
& \text { MhUG } \frac{1}{\text { a }} 4 \text { U: } \\
& y=\frac{w}{\gamma^{2}} \times\left[x^{2}-\frac{2}{4} L^{2}\right]
\end{aligned}
$$

APTER $A B L+C A T 1 O N Q$ simanc

$0-$
P(x) 9

$$
\begin{aligned}
& G=Q d F d \\
& d F=G G d s=G r d x d s \\
& d \gamma=r d F=G r=d X d s
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \frac{d y}{4}=c \\
y & =\frac{d}{4} x \\
\lambda_{x} & =\frac{c 1+c_{2}}{2} \frac{\Phi}{L}
\end{aligned}
$$

STRAMA la a polnt

$$
M(x, y, y)
$$

$$
N(x+d x, y+d y, z+d z)
$$

$$
\begin{aligned}
& \operatorname{man}^{n} A a_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { devo fof }=(4, d x) d x
\end{aligned}
$$

$$
\begin{aligned}
& \Delta T=Q r^{a} d x^{4} \quad 2 H \Delta R \\
& \text { x T }+\int_{0}^{9} \text { or } 27 d^{3} \frac{d y}{d r}
\end{aligned}
$$

Fon $\frac{55}{5 Y}=0.1$

FOR $\frac{5 n}{S Z}=0.1$

Fok $\frac{E 5}{5}-\frac{5 y}{5 z}=0.1$

$$
\begin{aligned}
& E_{x x}=\frac{5 E}{S y} \\
& E_{x}=\frac{1}{2}\left(5 E+5 \sum^{5} \frac{5 y}{5} 9 \quad G_{z z}=\frac{5}{5}\right. \\
& e_{X Y}^{X Y}=\frac{1}{2}\left(5 E+\frac{5}{5}\left(\frac{5}{5}\right)=e_{X} \quad\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { STRESS } 8 \text { R } \\
& F_{1}\left\{\begin{array} { l }
{ F _ { x x } } \\
{ F _ { x y } } \\
{ F _ { x z } }
\end{array} \quad F _ { 2 } \left\{\begin{array} { l }
{ F _ { x x } } \\
{ F _ { y } } \\
{ y _ { z } }
\end{array} \quad F _ { 3 } \left\{\begin{array}{l}
F_{z} \\
F_{z y}
\end{array}\right.\right.\right. \\
& S_{x x} \quad F_{x x / A} \mid S_{x y}=F_{x y}=S_{y} \\
& S_{y y} \text { fyy/A } S_{y z}=1 \times z / 4 \text { Szx } \\
& S_{z 2}-\operatorname{SEAA}_{4} S_{Y 3}=F_{1} / A=S_{I Y}
\end{aligned}
$$

STRESS ANO STRAMA RELATIONS

$$
\begin{aligned}
& S_{x x}=C_{11} C_{x}+C_{12} C_{y}+C_{10} C_{22}+C_{15} C_{x}+C_{16} C_{y} C_{1} \\
& S_{y}=C_{2 x} \\
& S_{Y z}=C_{11} G_{x x}+C_{62} C_{y}+
\end{aligned}
$$

For Nomocentous 1 sotropic solide.

HARMONACMOTION

$$
\text { cot } x=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{2}+
$$

$$
\text { THUS } 2 . a_{2}+61 a_{3} t+12, a_{4} t+20 \quad a_{1} t^{4}
$$

$$
=\omega^{2} a_{0}+\cot ^{2} a^{3}+\cos _{2} t^{2}+\operatorname{cog}^{2} t^{3}
$$

$$
\left(a_{n}+2 a_{2}\right)+\left[\omega_{3} a+6 q_{g}\right] t+\left(12, a_{4}+\operatorname{cog}_{2}\right) t
$$

$$
1\left(u b^{2} a s+20 q\right) t^{5}+\ldots \ldots=\square
$$

$$
a_{2}=\frac{w_{0}}{2} a_{0}: a_{0}=-\frac{w_{0}^{2}}{6} a_{1}, a_{4}=-\frac{20^{2}}{a_{0}} a_{2}=\frac{w^{4}}{2(12) a_{2}}
$$

$$
\begin{aligned}
& |\operatorname{ark}| M \mid \quad-k x=m x \\
& \text { FRtCloness } \quad \text { Let cos }=\sqrt{5 \mathrm{Sm}} \\
& \Rightarrow x^{2}+c 0^{2} x=0
\end{aligned}
$$

$$
\begin{aligned}
& S_{x x}=\left(C_{1}+C_{2}\right) C_{x}+C_{2} C_{y}+C_{3} C_{3} \\
& \text { Syy= } \\
& \text { (erc) }
\end{aligned}
$$

9.26 .8

DU五 TDE:

$$
2.3 .24,2.72 .9^{4} 211,12,214,14,2,16,17
$$

$m \ddot{x}+k x=0$
$x^{2}+4 x-0 \Rightarrow+2, \sqrt{b / a}$
$x=90+9+1+a+1 \%$ at

 $4(20)+1+4+)^{4}+1+0=0$

\rightarrow 亦
A

$$
\phi=0
$$

16x

$$
\begin{array}{ll}
x_{1}=s a+\omega \omega_{0} t & x_{1}(t)+\omega_{0}^{2} x(t)=0 \\
x_{2}=20+1 \omega_{0} t \quad \pi / 2 & \left.i x(t)+1 \omega_{0} x\right)=0
\end{array}
$$

AWe 151

$$
\begin{aligned}
& x(t)=x(t)+k x_{2}(t) \\
& x(t)=X_{1}(t)+1 x_{2}(t) \quad \text { e } \sqrt{1}
\end{aligned}
$$

Now wave cquamon beconts I

$$
x+u^{2} x=0
$$

$$
\begin{aligned}
& t_{0}=\text { TME MIOET GUANITY IS MAX }
\end{aligned}
$$

$$
\begin{aligned}
& -120 \\
& x=\cos x
\end{aligned}
$$

DAMRLD HARMONHGRY OSCILLATORS

$$
\begin{aligned}
& m x=k x-R x \\
& 2 . x \quad \omega_{0}=\sqrt{M M} \\
& \alpha=\frac{12}{2 M} \\
& x^{\prime \prime}+2 \alpha \dot{x}+\omega_{0}^{2} x=0 \\
& \Rightarrow x=e^{\operatorname{adx}^{\prime}} A \cot (c \operatorname{sot} q) \\
& \Rightarrow \omega_{D}=\sqrt{M-\left(R / 2 m^{2}\right.}=\sqrt{\omega_{0}^{2}-\alpha^{21}}
\end{aligned}
$$

$$
\begin{aligned}
& y, \operatorname{sos}+2, \square \\
& E=1 m x^{2}+1+x^{2} \\
& =m A \operatorname{Lin}^{2}\left(\omega_{p} t \cdot \phi\right)+\frac{1}{2} k A^{2} c_{2}(\cos t-\phi) \\
& \omega_{0}=\sqrt{F M} \\
& E=M A^{2} M \sin ^{2}\left(\omega_{0} t q\right)+\frac{1}{2} A^{2} a_{0}+A_{0}\left(\omega_{t} t\right) \\
& =\frac{1}{2} K A^{2}=10 H^{2} m \text { constanti) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 9-20-72 } \\
& m \ddot{x}=-k x \Rightarrow x=A \cot \left(\omega_{0} t-\phi\right) \quad \leq \omega_{0}=\sqrt{K M} T=\frac{2 \pi}{\pi} \\
& m \dot{x}=\cdots x-R x^{\prime} \Rightarrow x-e^{-\alpha t}\left[A \rho_{p}\left(H_{1} t-\phi\right)\right] \\
& \omega_{0}-\sqrt{\omega_{0}^{2} \alpha^{2}} \quad \alpha=R 2 m
\end{aligned}
$$

NOW CONSIDER:

$$
m \ddot{x}=k x-R \dot{x}+F \cos \omega t
$$

$$
m
$$

$$
\begin{array}{r}
\Rightarrow m \dot{x}+R \dot{x}+R x=F_{0} \omega d \omega t \\
\therefore x=C A n(\omega t-o) \\
\dot{x}=r \text { (To NeTCS) }
\end{array}
$$

$$
9 \cdot 30-72
$$

PROGRESSIVE WAVE

$$
\begin{gathered}
\text { PROGRESSIVE WAVE } \left.-\frac{x_{1}}{X_{2}}\right) \\
Y_{1}=a \operatorname{An}\left(\omega \left(t-\frac{1}{C}\left(x_{2}-x_{1}\right)\right.\right. \\
Y_{2}=a \operatorname{DNG}(t)
\end{gathered}
$$

IF THE PHASE DeFERENCE TWIXT
THE MOTION@ TWO PONS IS EXACTLY

$$
2 \pi \text {, THEN WE SAY THE POINTS ARE }
$$

apart ard
$c=\lambda f$

$$
\frac{\omega}{c}=k=2 \bar{\lambda}
$$

$$
\begin{aligned}
& \text { work }=\vec{F} \cdot \vec{V}-G Y M=\left(-T \frac{8 Y}{8 x}\right) \frac{6 Y}{8 t} \\
& d W=-T \frac{d Y}{6} \text { 客 } d t \\
& W_{A V E}=S=\frac{\partial}{r} \int_{0}^{T}-T \frac{S Y}{S x} \cdot \frac{\delta y}{s t} d t
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{4 n}{\left.\frac{8 n}{2}\left[\sin \frac{n \pi}{2}(x-c t)-c t\right)+\infty \quad \text { nt }(x+c t)\right]} \\
& \text { D } \\
& P_{0}=a \sin \omega t
\end{aligned}
$$

$$
\begin{aligned}
& \text { For a procresslue wave } \\
& S=\frac{1}{T} \int_{0}^{t}-T\left[-a \frac{w^{c}}{c} \cos \cos \left(t-\frac{x}{c}\right) \text { a } \omega \cos \omega\left(t-\frac{x}{c}\right)\right. \text { d } \\
& =\frac{T a^{2} \omega^{2}}{c T} \int_{0}^{T} \cos ^{2} \omega\left(t-\frac{x}{c}\right) d t \\
& =T a^{2} w{ }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& Y(x, b)-a \cos \left(\omega t-k x+\phi_{a}\right)+b \cos \left(\omega t+k x+\phi_{b}\right) \\
& a=191 e^{i d_{4}} \quad h_{=}=11 e^{t h} \\
& Y_{0}(x, t)=a e^{i(\omega t-k x)}+b e^{i(\omega t+k x)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cimperance \&a boint } \\
& z_{5}=\frac{-T \delta \delta / 5 x}{\delta y / \delta t} \\
& \text { GOUNDRY CONDITHNE } \\
& Y(\rho t)=0=a e^{i \omega t}+b e^{i \omega t} \Rightarrow a=-b \\
& \Rightarrow y=a e^{1 k t}\left[e^{-i k x}-e^{i k x}\right] \\
& =-2 i a e^{\operatorname{mot}} \operatorname{Ain} k x \\
& =A \text { Am kx elukX } \Rightarrow A=2 i \dot{a}
\end{aligned}
$$

$\Rightarrow \frac{5 y}{5}=\operatorname{tic} A \sin k x e^{\text {int }}$

$$
\begin{aligned}
& =-\frac{k T}{\operatorname{La}} \cot k x \\
& =1 p \cot ^{t} k X
\end{aligned}
$$

$$
\left.z_{s}\right|_{n=-n}=-i p \ll \cot k
$$

ORIUING POINT INPEDENCE IS Y COMP OF FOREE EXERTED BYTHE DNIVER ON THE STRINQ OVER THE STRINGS VELOCTY $=\left.Z_{S}\right|_{X=-L}$

$Y(x, t)=A$ Aum $e^{t a t}$

$$
\Rightarrow m \dot{r}_{0}+\ddot{Y}_{\mathrm{u}} k \gamma_{0}=F_{0} e^{F_{0} \omega}
$$

$$
=\quad 0 T_{0}^{Y} Q^{i \omega t}-\left.\frac{T b Y / 5 x}{Y_{0}}\right|_{x / E t}
$$

$$
z_{o p}+E_{m}=\frac{1 T_{0} \ell e^{i \omega k}}{r_{0}} \rightarrow \tilde{r}_{0}-\frac{1 t_{0} e e^{2}}{Z_{m}+E_{D P}}
$$

BEFORE ATYATGHMN STHENE

$$
Y_{0}=\frac{0 I_{0} e e_{m}}{2_{m}}
$$

$$
\begin{aligned}
& \Rightarrow m_{B}+R Y_{A}+K Y_{D}=\beta I \ell Q^{i \omega t}+T K x \mid x=-\ell \\
& -\left(B I_{0} L+T A K c a k \|_{\alpha} E\right. \\
& =\left(B I_{0}+T A K \cos k L\right) e^{t a t}
\end{aligned}
$$

$$
\begin{aligned}
& m \ddot{y}_{0}+R \ddot{y}_{0}+K \varphi_{0}=Q T_{0}+\cos w^{t} \\
& m Y_{0}+R \ddot{Y}_{0}+k Y_{0}=R I_{0} Q \quad 1 \omega R
\end{aligned}
$$

$10-2 \cdots 3$
 Wh GAGG THAHE

$$
\begin{aligned}
& \text { y. Mr M } \\
& 48
\end{aligned}
$$

$$
\begin{aligned}
& Y(x, t)=A \text { an } k x e^{t a t h e} A \text { arm } k x \cos (a t t+x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { WHATHE SAME: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TF } \frac{a}{c} L=1 \text { N. A MEALLY EIG } \\
& \text { A } \\
& A^{\infty} \\
& \mid
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x+}{x=1} \\
& 1 \pi \\
& y=-9 x+6+1+x) \\
& \text { 1, e e i(atc+k+) }
\end{aligned}
$$

$$
\begin{aligned}
& x=q e^{-(\tan -(x)}+q \quad p^{2}-z_{1}
\end{aligned}
$$

$$
10 \cdot 2.72
$$

$$
\begin{aligned}
& C_{1}=\sqrt{T_{2}} \\
& C_{2}=\sqrt{Q_{1}}
\end{aligned}
$$

Ne REVELE
$x=(6)$

$$
\begin{aligned}
& y_{0}=f_{1}\left(x-x_{1}\right)+\operatorname{l}_{1}\left(x+c_{1}\right) \\
& y_{2}=f\left(x-k_{2}\right)+e_{2}(x+c, t) \\
& \left.Y_{1}(2,\}_{1} \quad\right|_{x=0}=\left.\frac{y_{2}}{5 x}\right|_{x=0}
\end{aligned}
$$

$$
\begin{aligned}
& \left.a_{1}+b_{1}=a_{2} \quad \text { rkem } \quad r_{1} \cot t\right)=Y_{2}\left(a_{1}, t\right) \\
& -i k a_{1}+i k_{1} b_{1}=z_{1} k_{2} a=c_{1} \quad s y_{1}\left(b_{i}\right)_{2}=s b(c t) \\
& \Rightarrow a_{1}-b_{1}=\frac{k_{1}^{2}}{k_{1}} a_{2}=c_{1} a_{2} \\
& \frac{c_{2}}{c_{1}}-\frac{a_{1}+b_{1}}{a_{1}+b_{1}} \Rightarrow \frac{b_{1}}{a_{1}}-\frac{c_{2}-1}{c_{1}+1}=\frac{c_{2}=c_{1}}{c_{2}+c_{1}} \\
& Y,=a \cdot e^{i(\omega+t x)}+b_{1} e^{b(\omega t+k)} \\
& \left.Y_{2}(x, t)=a z e^{a+\operatorname{tat}} \pm k_{2} x\right) \\
& \left.Y_{1}\right|_{x=}=a_{1} e^{\text {zont }} \\
& \left.Y_{2}\right|_{x=0} ^{x=b_{1}} e^{2 \omega t}=\frac{c_{2}-c_{1}}{c_{2}+c_{1}} a e^{i \omega t} \\
& =\left.\left(c_{2}-c_{1} c_{1}\right) Y_{K}\right|_{K=0}
\end{aligned}
$$

SMPLE OASE.

$$
e_{x x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x=-\Delta x}{\Delta x}
$$

$$
\begin{array}{r}
\text { STRESSMSTRACN } \\
\text { RELATIONSHH }
\end{array}
$$

$$
\begin{aligned}
& \text { F"+F-M9 } \\
& \Gamma_{x}+\Gamma_{x}=\boldsymbol{m} \\
& F_{x}^{\prime \prime}-\frac{1}{f} x=m 9 x \\
& F_{x}(x+\Delta x)=F_{x}(x)=\left.p A \Delta x x^{2} \varepsilon^{2}\right|_{x+\Delta y} ^{2} \\
& \frac{E_{X}}{3}=p A t^{2}= \\
& \text { YA } \frac{S^{2} E}{S} x=p A \frac{S}{2}
\end{aligned}
$$

$$
10 \cdot 12 \cdot 72
$$

TRANSVERSE WAVES IN RODS

$$
\begin{aligned}
& F_{p}(x+\Delta x)-F_{y}(x)=\left.p \omega h \Delta x s t\right|_{x}+d x \\
& \Rightarrow \frac{S P^{x}}{H_{x}}=0 e \mathrm{~h} \frac{s^{2} y^{2}}{t^{2}} \\
& F_{F}(x+\Delta x) \frac{\Delta x}{2}+M(x+\Delta x)-M M(x)+F_{y}(x) \frac{\Delta x}{2} \\
& \begin{array}{l}
=\frac{1}{2} \alpha_{2} \\
\frac{1}{10} \Delta x \quad \Delta x^{2} \alpha_{z}
\end{array} \\
& \frac{F_{p}(x+8 x)-F_{y}(x)}{2}+\frac{72(x+\Delta x)-7(x)}{\Delta x}=\frac{1}{2} p Q_{1} L(\Delta x)^{2} \\
& \Rightarrow F_{y}(x)+\frac{5 m}{5 x}-0 \Rightarrow F_{Y}=\frac{-6 m}{8 x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{b F y}{5 x}=\rho \omega h \frac{s^{2} y}{S t_{2}} \quad, \quad F_{y}=-\frac{5 M}{\delta x}, M=\frac{Y \text { eh }}{}{ }^{3} \frac{57}{5 x^{2}} \\
& \Rightarrow \frac{82 m}{x^{2}}=\text { pш } \frac{s^{2} y}{s t^{2}} \\
& -Y^{2} \operatorname{Van}^{3} \frac{b^{4} 4}{\delta x^{4}}=p \omega h E^{2 Y} \\
& C^{2} I^{2} \frac{\delta^{4} y}{\delta x^{4}}=\frac{s^{2} y^{2}}{\delta t^{2}} \quad c=\sqrt{10} I=\frac{h}{\sqrt{12}} \\
& m=\frac{y w h^{3}}{12} \frac{\delta^{2} y}{5 x^{2}} ; F_{y}=-\frac{\delta m}{\delta x} ; c^{2} I^{2} \frac{\delta^{4} y}{\delta x^{4}}=\frac{\delta^{2} y}{\delta t^{2}} \\
& Y(x, t)=X(x) H(t) \\
& c^{2} I^{2} H(t) \frac{d^{9} x}{d x^{2}}=-X \frac{d^{2} H}{t^{2}} \\
& -\frac{e^{2} I^{2}}{x} \frac{d^{4} x}{d x^{4}}=\frac{1}{H} \frac{d^{2} H^{2}}{d t^{2}}=-\infty 0^{2} \\
& \frac{d^{2} H}{t^{2}}=-\omega^{2} H \Rightarrow H=b_{1} \cos \cos t+b_{2} \text { anced } \\
& \frac{d^{4} x}{d x^{4}}=c^{\omega^{2}}=8=\alpha^{4} X \quad \Rightarrow \quad \alpha=\sqrt{\frac{\omega}{C}} \\
& \bar{X}=a_{1} \cos \alpha x+b, \tan x+q_{1} \cos a d x+d_{1} \text { sinax } \\
& \Rightarrow y(x, t)=\left[A, \operatorname{cog} a x+A_{2} \sin \alpha x+A_{3} \cot A_{0} x+A_{4} \sin A x\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { + Byamaxalanut }
\end{aligned}
$$

If Ale but $A_{1}=0$
$Y(x, t)=A, a \operatorname{L}, \alpha x \operatorname{dat}$ L

BOUNDRY CONDITICNS

$$
\begin{aligned}
& y(0, t)=y(c, t)=0 \\
& \left.\frac{b}{5}\right|_{0, t}=0=\left.\frac{g}{5}\right|_{L t}
\end{aligned}
$$

$Y(0, t)=\left[A_{0}+A B\right] \cot \omega t+[B,+B] \operatorname{An} \omega t=0$

$$
\left.\frac{d Y}{d x}\right|_{0, t}=0=\left(A_{2}+A_{4}\right) \cos \operatorname{ert}+\left[B_{2}+B_{4}\right) \text { Ainwt }
$$

$$
\Rightarrow A_{2}=A_{4} \quad ; B_{2}=B_{4}
$$

$\left.\Rightarrow \gamma(x, t)=A_{1}(\cos \alpha x-\cos h a x)+A_{2}\left(\sin \alpha x-\sin h_{\alpha} x\right)\right]$

$$
\begin{equation*}
+\left[B_{1} C\right. \tag{27}
\end{equation*}
$$ cosut

$$
)+B_{2}(
$$

$$
\text { fop } \quad i(1, t)=0
$$

$$
\left.A_{1}\left(\cos _{1} \alpha-\cot \operatorname{l} \alpha L\right)+A_{2}(\sin \alpha L-\sin \alpha)^{2}\right)
$$

FoR $d x \mid x=4$

$$
A_{1}(\sin \alpha L-\tan \alpha \alpha)+A_{2}(\cos \alpha L-\cos \alpha \alpha)=0
$$

$$
\begin{aligned}
& A_{3}=A \quad ; \quad B_{3}=B_{1} \\
& \Rightarrow Y(x, t)=\left[A_{1}\left(a_{0} \alpha x-\infty \quad R \& x\right)+A_{2} \sin \alpha_{0} X\right. \\
& 4[B C \\
& \text { + AybinR a X cosar } \\
& \left.\sum_{1}+Q_{2}\right] \text { inct }
\end{aligned}
$$

$$
\begin{aligned}
& =A_{1}\left[\cos (x+\cot)+\cos ^{2}(x x-\omega t]\right. \\
& =\frac{A_{1}}{2}[\cos \alpha[x+v t]+\cos d[x-v t)] \Rightarrow v \frac{\omega}{\alpha} \\
& V=\frac{\omega}{\alpha}=\frac{\omega}{\sqrt{\frac{d}{a t}}}=\sqrt{\omega c I}
\end{aligned}
$$

SOLVING for A: A,

$$
\begin{aligned}
& \frac{A_{2}}{A_{1}}=-\frac{\cos \alpha L-\cos h \alpha L}{\operatorname{An} \alpha L-\operatorname{Ain} \alpha L}=\frac{\operatorname{AnCL}+\operatorname{Anh} \alpha L}{\cos \alpha L-\operatorname{coth} L} \\
& =-\left[\cos ^{2} \alpha L-2 \cot \alpha L \operatorname{cochaLL}+\operatorname{cogh} \alpha^{2} \alpha\right] \\
& =\sin ^{2} \alpha L-A m h^{2} \alpha L \\
& \rightarrow 2 \operatorname{La} \cdot \alpha C O A Q L=\operatorname{An}^{2} \alpha L+\cos ^{2} \alpha^{2} \\
& -\left[\sin \alpha^{2} L-\cos h^{2} \alpha\right] \\
& \Rightarrow 2 \cos \alpha L \cos \alpha L=2 \\
& \therefore \cos \alpha \operatorname{coth} \alpha=1 \quad \alpha=\sqrt{\frac{\omega}{C L}} \\
& o_{L}=\frac{3.01}{2} \pi, \frac{5}{2} \pi, \frac{2}{2} \pi, \ldots=\sqrt{\frac{L}{C L}} L \\
& \Rightarrow \omega=\left(\frac{3.01}{2 L}\right)^{2},\left(\frac{5 \pi}{2 L}\right)^{2} \in t, \ldots
\end{aligned}
$$

turs.

BMONDRY CONDITIONS:

$$
\Rightarrow \cosh h \operatorname{cochoh}_{3.01} \frac{1}{1}=\frac{1}{3}
$$

$$
\begin{aligned}
& \left.2 \mu \mathrm{~L}, \frac{2 \pi}{2}\right)^{2} C I \\
& \quad f=\sec , L^{2},
\end{aligned}
$$

$$
\begin{aligned}
& f(0, t) \geqslant \theta \rightarrow A-=\cdots A
\end{aligned}
$$

$$
\begin{aligned}
& T_{y}=\frac{I^{2}}{m_{x}}+\square \\
& \text { In } \frac{x^{4} n^{3}}{1 / 2} y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +\quad(E
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{cox}_{2}, 71=0=5 x^{2} 2=0 \\
& \left.f_{n}=0\right)^{2} x_{2}=0(x+1
\end{aligned}
$$

Gobk out Fragemerneyment
3-6 s4 wokk

TORSIONAL WAVES

$$
\begin{aligned}
& d F G \quad G \\
& =d F G e d A=G r \operatorname{SH}^{2} d A
\end{aligned}
$$

$$
\begin{aligned}
& r d F=G r d \psi d r \quad 4 T \cdots G d N(2 \pi r d r) r \\
& T=\int_{0}^{a} G r\left(\xi \frac{y}{s} \text { 2Tr }\right) d r=1 / E x T \\
& =c \frac{d \pi}{5 x} \frac{14}{2}
\end{aligned}
$$

$$
T(x+x x, t)-T(x, t)=\left[\frac{1}{2}, \frac{1}{2}+\pi_{1}^{2} a^{2} \delta^{2}\right.
$$

$$
\frac{1}{2} I x_{x}
$$

$$
\Rightarrow \frac{5 \eta}{5 x}=\frac{\pi a^{4} 6^{2}}{5 t^{2}}
$$

$$
\Rightarrow y(1(x c t)=11(x+c t)+1 / 2(x+c t)
$$

$$
\psi(x, t) \frac{1}{L^{2}} \frac{X}{X}(x)(t(t)
$$

$$
\frac{L^{2}}{x} d^{2}=\frac{1}{H} d^{2} d^{2}=-w^{2}
$$

$$
X(x)=9, c q-E x+1+2+\frac{u}{e} x+1
$$

$$
\begin{aligned}
& +1 A 3+4+4 x+A_{4} A \operatorname{ctc} \in A+A \in C L
\end{aligned}
$$

$10-1172$
WAVES IN MEABRANE

$$
\begin{aligned}
& \Rightarrow T\left[\frac{s^{2} x}{x^{2}}+\frac{s^{2}}{x^{2}}\right]=0 \frac{s^{2} e}{z^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& z(x, y, t)=\bar{X}(x) Y(y) H(x) \\
& A\left(\cos 2 \mathrm{~S}_{2} \operatorname{ct}^{\prime}(x \cos \theta+Y \operatorname{coc} \theta)\right. \\
& 5^{2}=\frac{5}{5}=\frac{4}{5}=\frac{50}{5} \quad C-002 \theta
\end{aligned}
$$

$$
\begin{aligned}
& 5 y^{5}=\frac{6^{2} 2}{y^{2}} \sin ^{2} \theta \\
& z^{2} z=z^{2} z^{2} \\
& x=x \cos \theta+y \operatorname{tin} \theta \\
& z=X(X) I(Y) H(t) \\
& \frac{c^{2}}{X} \frac{d^{2} x}{d x^{2}}+\frac{c^{2}}{I} \frac{d^{2}}{d Y^{2}}-\frac{1}{d} \frac{d y}{d t^{2}}=\omega^{2} \\
& \frac{d^{2} t^{2}}{d t^{2}}-\omega^{2} H \\
& \frac{1}{X} d x^{2}+\left(\frac{a}{C}\right)^{2}-\frac{1}{X} d^{2} t^{2}-\infty 2
\end{aligned}
$$

$\bar{X}=d s$ cadxtet $4 \operatorname{thx} x$
$Y-d y d \sqrt{(u)^{2}-d^{2}} y+d c \operatorname{Am} \sqrt{\left(\frac{\omega}{c}\right)^{2} \alpha^{2} y}$

$$
\Rightarrow z(x, y)\left(d=e \cos +d_{4}+\operatorname{cog} x\right)
$$

$$
\left(d 3 \cot \sqrt{\left(\frac{w}{2}\right)^{2} \alpha^{2}} x+d 6 \operatorname{coc} \sqrt{(u)^{2} \cdot x^{x}} \varphi\right)
$$

$$
\left.\underbrace{b_{0}}_{a_{0}}\right|_{x}
$$

$\left(d_{1} \cot \omega+d_{2}\right.$ Nitcot)
EGUNDRY CONDITHONS:

$$
\begin{aligned}
& z(a, y, t)=0 \Rightarrow d s=0 \\
& z(x, 0, t)=0 \Rightarrow d 5=0 \\
& z(a, y, t)=0 \\
& z(x, b, t)=0
\end{aligned}
$$

FROM FHRSI TWO BOUNDRY CONQITIONS

$$
0=2\left(a_{0}, y, t\right) \leq \frac{x a=n \pi}{n}, m=1,2,3,4 \ldots \ldots
$$

$$
a=z\left(x, b_{0}, t\right) \Rightarrow \sqrt{\left(\frac{u}{c}\right) \cdot\left(\frac{m}{a}\right)^{n}}=n \pi / b, n=1,2,3,4
$$

$$
\begin{array}{r}
w_{11}=c m \sqrt{(b)} \sqrt{b}\left(\frac{a}{a}\right)^{2} \\
u_{m n}=c m \sqrt{\left(\frac{n}{b}\right)^{2}+(m)^{2}}
\end{array}
$$

$$
\frac{1}{\ln _{2}}=n \sqrt{\left(\frac{n}{b}+\left(\frac{m}{n}\right)^{2}\right.} \quad n=1,2,3
$$

- Bma Lin $\left.\sqrt{\left.(p)^{2}+\right)^{n}} t\right]$

$$
\begin{aligned}
& \frac{d x}{d x}=\alpha^{2} H \quad ; \frac{d y}{d y}-\left[\left(\frac{u}{c}\right)^{2} \alpha^{2}\right] X \quad d b \quad w^{2} H \\
& H=d, \cot \omega t+d_{2} \sin \omega t
\end{aligned}
$$

$$
\begin{aligned}
& z_{11}=\sin \frac{\pi}{a} \times \sin \frac{\pi}{b} Y\left[c_{11} \cos \left(\operatorname{sen}_{n} t+\phi_{1,}\right)\right] \\
& z_{33}=\sin \frac{3 \pi}{a} \times \sin \frac{2 \pi t}{b} Y\left[C_{2} \cos \cos _{32} t+\phi_{32}\right]
\end{aligned}
$$

$$
z(x, y+1) \sum_{n=1}^{\infty} \sum_{n=2}^{\infty} z_{m n}(x, y, t)
$$

GIVEA:

$$
Z_{0}(x, y) m^{4 N D} V_{0}(x, r)
$$

$$
9 \quad A_{m n}=\frac{4}{a} \int_{0}^{b} \int_{0}^{a} 2(x, y) \sin \frac{m \pi x}{a} \sin b x d x d y
$$

$$
10-12-72
$$

$$
c^{2}\left[\frac{s^{2} z}{S x^{2}} \cdot b^{2} S^{2}\right] \cdot\left[S^{2} s^{2}\right]
$$

$$
Z(X, Y, L)=X(X) Y(Y) H(t)
$$

CIRCUEAK MEMERANE:

VERTICAL
T(rear)Ad
COMAMONENT
 z

TTAN

Bt $z(r \phi, t)=R(r) \phi(\phi) \|(t)$

$$
\frac{d^{2} H}{d t^{2}}-\omega^{2} H
$$

$$
\begin{equation*}
\frac{d^{2} \phi}{d \phi}=-m=\phi \tag{2}
\end{equation*}
$$

$$
\frac{d 2}{1 r 2}+\frac{1}{r} d r+\left(k=-\frac{m}{r a}\right) R=C
$$

$$
\begin{aligned}
& \text { (1) } H(t)=d, \operatorname{at}=\omega t+d_{2} A_{1}+\infty t
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Rightarrow z=R(r)\left[d_{s} C d(m \phi+c)\right]\left[d_{G}+(\xi) t+r\right)\right] \\
& \text { vet } z(n, t)^{\prime} \geq(1+\phi+2 n+t) \\
& \Leftrightarrow m, m, 1,3,3, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& =c^{2}\left[\frac{s^{2} z}{s r^{2}}+\frac{1}{r} \frac{5 z}{s r}+\frac{1}{r} \frac{s^{2}}{4}=\right]-\frac{s^{2}}{s^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sigma\left(r d \phi^{\circ} \Delta r\right) s+T_{r, t}
\end{aligned}
$$

$$
\begin{aligned}
& \text { LET } \quad 12(n)=\frac{\sum_{1-\infty}^{2}}{n+1} \text { n }
\end{aligned}
$$

$$
\begin{aligned}
& 4=0
\end{aligned}
$$

$$
z_{12} z_{1} C_{1} U_{2}\left(\frac{301}{a} r\right] \cos (\phi+\phi)\left[a \infty \quad \omega_{1}+1\right.
$$

$$
\left.z_{2}, C_{2} u_{2}(513) \operatorname{cou}\left(2 \phi_{4} \phi_{\infty}\right) \psi_{\infty} a_{0}, t, l_{2}\right)
$$

$$
\begin{aligned}
& c^{2}\left[d^{2} z=+\frac{1}{d} b^{z}+1+s^{2}\right]=c^{2} b_{z}^{z} z
\end{aligned}
$$

$$
\begin{aligned}
& \text { [d,arhutida'lunwl' }
\end{aligned}
$$

$$
\begin{aligned}
& m=1 \quad J,\left(q_{2}\right)-0 \\
& \text { C. } 4=3.83,7.01 \\
& \begin{array}{rr}
m-2 & \mathcal{L}(4 t q)-0 \\
u_{a}-6,15,8.41
\end{array}
\end{aligned}
$$

$4-5$
$4-9 \quad 4.10$
50,1 (1159 1110
$10-17-72$
$1+\cdots \mid$
 Tdietd $\& t+C=4 \operatorname{tat}$

$$
\begin{aligned}
& A F=+D=\cdots \hat{t} \quad d V
\end{aligned}
$$

$$
\begin{aligned}
& \pi T \int_{0}^{a} \int_{0}^{a} z(r, \phi, t) r d r d \phi=d V
\end{aligned}
$$

SOLUTAON:

$$
15 m \neq, \quad t=0
$$

$$
\text { IF } m=0
$$

$$
\begin{aligned}
& I_{0}=\frac{d e}{\left[\int-\frac{d B_{0}+a^{2}}{n d c^{2} R^{2}}\right]}=\int_{0}^{1} \int_{0}^{2 \pi} J_{m}(k r) d r d \phi \\
& =\left.\left[\frac{2 \pi}{1-\frac{j p_{0} \| a}{V_{0} G_{0}}}\right] \frac{(k)^{2} U_{1}(k)}{k^{2}}\right|_{0} ^{a}\left[\frac{2 \pi a}{1-\frac{0 p_{0} / a}{V_{0} k^{2}}}\right] o_{1}\left(k_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& z(n, \phi, t)=\psi(r, \phi) H(b) \\
& d W^{2}=\int_{0}^{a} \psi(n, d) \|(t) r d r d q
\end{aligned}
$$

$$
\begin{aligned}
& \text { - der } 1 \text { (} n, p)=R(N)+1)(A)
\end{aligned}
$$

$$
\begin{aligned}
& r^{2}\left[\frac{d^{2 R}}{n^{2}}+\frac{1}{r} d^{1 R}+1^{2} R^{7}=-\frac{1}{T} \frac{d^{2}}{d d^{2}}=m^{2}\right. \\
& y(r, \phi)=J_{m}(k n)\left[d_{3} a_{2} d m_{1}+d_{4}+m m p\right]+\frac{d Q_{0} q_{0}}{V_{0} k} \\
& \Rightarrow z(n, \phi, t)-[\ln (k r) \geq d z \text { ent } m \phi+d u \operatorname{sog}, n, \phi)
\end{aligned}
$$

nos $\omega t+B \operatorname{din} \omega t$

$$
\begin{aligned}
& z(a, t)=0 \\
& \leq J_{a}(k \alpha)=-\alpha^{1 / k / k} /\left(k_{a}\right.
\end{aligned}
$$

wren ar Micmac.
DRIVEN MEMBRANE

$$
\begin{aligned}
& \text { assume }, 2(r, t, t)=\psi_{2 \psi}(t, r) H(t) \\
& c^{2}\left[\frac{b y}{r}+\frac{1}{r} \frac{b}{b r}+\frac{1}{b^{2}} \frac{b^{2} \phi^{2}}{\frac{1}{2}}\right] \text { cos wet } \frac{p_{1}}{\sigma} \text { ale w } \\
& =-\omega^{2} \psi_{\cos \cot }
\end{aligned}
$$

1001837

$$
\begin{aligned}
& {\left[\frac{14}{x}+\frac{1}{x}+\frac{1}{4}+1 / k^{2} \neq\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q2UNUR CCUHGT COA S }
\end{aligned}
$$

$$
\begin{aligned}
& =2 n=0
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{P_{0}}{\sigma \omega}\left[\begin{array}{ll}
{[0(K R)} & 1 \\
0 & (K a) \\
0
\end{array}\right] \\
& \mathrm{Canctc}^{6} \\
& r_{0} \quad 1(1+a)=1_{0}(t+1=0, z(r, t) \cdots \infty
\end{aligned}
$$

WAVES IN FI UDS

IN ANIULAC EGUU THORE AML NO SHEARLNS SMAN:
 $-1 Q\left(E_{x y}+C_{y y}+e_{x}\right)$

WAVES

e

OA FRONT ANU UACR MACESB

SOL UTIONS: "VELOEITY of PLANE WAVES $P=A e^{i \alpha-1-1)} \quad(P L A N L \quad W A V E)$ $f(2)=2=c t-(x \sin \cos \theta+y \cos \theta \operatorname{con} \phi+z \cos \theta)$
 X

For

$$
1 D E A C \quad C A S: B_{A}=y P \Rightarrow C_{n}=\sqrt{\frac{d P}{p}}
$$

$$
\begin{aligned}
& \rho_{V}=n R T=n=\frac{v}{n}=\frac{n}{n}=n m \\
& \begin{array}{c}
V=n R T / V=\frac{n 2 n}{\rho} \\
p=R T / N_{2}
\end{array} \\
& \Rightarrow C=\sqrt{d R T / \lambda} \quad \text { andet } \sqrt{7}
\end{aligned}
$$

$$
10 \cdot 19 \cdot 72
$$

WAVES IN ELUIDS

$f(x, x, t)=[a \cdot \cos \alpha x+b, \sin \alpha x]$
$\left[a_{2} \cos B Y+b z \sin B Y\right]$
$\left[a_{3} \cos \gamma \dot{z}+b_{2}\right.$ díndy]
[a4cos $\left.\omega t+b_{4} \sin \omega t\right]$

$$
=A \cos \left(\alpha x+\Omega_{1}\right) \cos \left(\beta y+\Omega_{2}\right)
$$

$\left.\left.\cos (1 \times+)^{2}\right) a_{1}+(\operatorname{tat}+)_{4}\right)$
COETERMINE AE FUNETION OF $\&$ NLANE WAVES)

SIMILARLY

REDUCING THE EQUATION:
$P(x, y, z, t)=\left(a_{1} a_{2} a_{3}\right) \cos \alpha \times \cos B Y \cos t z$
[aycoswt $\left.+b_{4} \sin w t\right]$
$p_{n_{x}, n_{4}, n_{x}}=\cos \frac{n_{x} \pi}{L_{x}} \times \operatorname{con} \frac{n_{4} \pi}{L_{4}} Y \cos \frac{n_{2} \pi}{2}$
$\left[A_{n_{x}} n_{r} n_{2} \cos \omega_{n_{n} n_{2}} t+B_{n_{x}+1 n_{1}} \sin \omega_{m_{2} n_{r} n_{2}} t\right]$
${ }^{\prime} L_{x}>L_{y}>L_{Z}$; funp Farq. Woulo BE ΠC
$P_{100} \cos L_{x} \times\left[A_{100} \cot \frac{\pi}{L_{8}} c t+B_{10000} \log\right.$ L $\left.L_{x} t\right]$ $=C_{100} \cos \frac{\pi}{2} \times\left[\cos \left(\frac{2}{2} \square t+\Omega 100\right)\right]$

$$
\begin{aligned}
& 0=n\left(x, L_{y} z\right)=\left.\frac{\delta \cdot}{\delta Y}\right|_{x, L y, z, t}=0 \Rightarrow \beta=n_{Y} / L_{V} \\
& 0=\left.P\left(x_{1}, L_{z}, t\right) \Rightarrow \frac{\delta \gamma}{\delta Z}\right|_{x, Y_{1} L_{z}, t}=0 \Rightarrow \gamma=n_{z T} L_{L_{z}} \\
& \gamma^{2}=k^{2}-\alpha^{2}-\beta^{2} \\
& =\left(\frac{w}{c}\right)^{2} \alpha^{2}-\beta^{2} \Rightarrow\left(\frac{w}{c}\right)^{2}=d^{2}+\alpha^{2}+\beta^{2} \\
& =\left(\frac{n_{2} \pi}{L}\right)^{2}+\left(\frac{n \pi}{L x}\right)^{2}+\left(\frac{n=\pi}{2}\right)^{2} \\
& \therefore \omega_{n_{1} n_{x} \eta_{2}} \pi C \sqrt{\left(\frac{n x}{L x}\right)^{2}+\left(\frac{n_{x}}{L_{x}}\right)^{2}+\left(\frac{n}{12}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon(0, y, z)=0 \\
& \Rightarrow \text { E.b }_{0}=0
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Rightarrow \frac{\delta \partial}{\delta x}\right|_{0, x}, z, t=0 \Rightarrow b_{0}=0 \\
& n(x, 0, z, t)=0 \\
& \Rightarrow \frac{\left.\sin _{0}\right|_{0}=8}{} \\
& \left.\left.\Rightarrow \frac{5 \Delta}{\frac{5}{5}}\right|_{=0}\right|_{0,0} \Rightarrow b_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& -\operatorname{grad} \beta=\rho^{\frac{s^{2}}{}{ }^{2}} \\
& \frac{-x}{5 x}=\rho \frac{s^{2}}{52}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10-24-72 } \\
& 2,6,5,6,8,9,10,11 \\
& p=B_{a}\left[\frac{\delta E}{\delta x}+\frac{\delta x}{\delta t}+\frac{\delta x}{S z}\right]=-\beta d d i s \\
& =-\operatorname{mad} O=b^{2} B^{2} t^{2}
\end{aligned}
$$

$$
\begin{aligned}
& p(x, t)+f(x-c t) \\
& P(t, t)=f_{2}(y-c t) \\
& b(z, c)=A s(x-t \\
& P_{n} \text { s } v=e t[x \cot \cos p+\mathrm{lamadin} \phi \\
& O(x, y, z, c)=X(x) \bar{Y}(\psi) z(z) H(y) \\
& \Rightarrow P(x, y z, t)=(a, \sec \alpha, b+b \cdot \sin \alpha x) \\
& \left(a_{2} \cos P_{4}+b_{2} \operatorname{lin}^{2}\right. \text {) } \\
& \text { (a, as2 } b=+b_{3} a+20=\text {) } \\
& \text { (a, abs ab + by dinut) } \\
& \alpha^{2}+\theta^{2}+\gamma^{2}=\left(\frac{4}{c}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon(0, Y, z)=0 \Rightarrow \frac{5}{8} \|_{0,4},=0 \\
& \xi\left(L_{x}, y, t\right)=0 y-5 \theta \|_{x, y, t}=0 \\
& \Rightarrow b_{1}=a \\
& x=n_{x} \pi /_{x} \\
& 10=0=n=n \times \pi \\
& b=0 ; \gamma=n \cdot \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& y(\underline{w})=\pi \sqrt{\left(\frac{n_{x}}{L_{x}}\right)^{7}+\left(\frac{n_{y}}{L_{y}}\right)^{2}+\left(\frac{n_{x}}{L_{z}}\right)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { + } B_{n x} n_{n} \text { dinem } n+n=\text { d] } \\
& w_{p_{0}}=\frac{\pi c}{L_{x}}+c_{\text {roo }} c \cot ^{2} L_{x} \times \operatorname{cod}\left(\omega_{100} t+\Omega_{100}\right) \\
& \left.\right|_{0} ^{\infty} \frac{1}{2}\left[\cos \left(\frac{\pi}{L x} x+\omega_{p o 0} t+\Omega\right)\right. \\
& +\cos \left(L_{x} x-\cos _{\operatorname{tos}}(-\Omega)\right]
\end{aligned}
$$

WAVEGUHDE

$$
\begin{aligned}
& P(x, y, z, t)=6, a+2 x+b+t i x a x) \\
& \text { (apaas bxabo4m Bx) }
\end{aligned}
$$

$$
\begin{aligned}
& Q_{0, x} z, t=O_{t, y, z}=c \\
& O_{x, 0, z, t}=O_{x, 4, z, t}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4) } \\
& \stackrel{(4)}{\Rightarrow}(x, y, t)=C \operatorname{cog}^{\frac{n y \pi}{L x}} \times \operatorname{cog}_{\frac{1}{l y}}^{l y}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4}{2}[\cos (b=+\cot +\Omega)+\cos (\delta \cos -\operatorname{dt}] 4 \\
& =\frac{1}{2}\left[\cos D\left[z+\frac{\omega}{\partial} t+\Omega+\delta\right)+\cos d\left(z-\frac{\omega t}{\partial}+\frac{b \Omega}{\partial}\right)\right] \\
& \Leftrightarrow c^{\prime}=i / d
\end{aligned}
$$

FOR EIXED W, THERE IS A S QLUTION OF A

$$
\begin{aligned}
& \text { DE EVERY, NALUE OF } n_{\mathrm{K}} \frac{1}{5} n_{2} \text { FOR WHBCH: } \\
& \text { (e) }\left(\frac{\omega^{c}}{c}\right)^{2}>\left(\frac{n_{x}}{L}\right)^{2}+\left(\frac{n \pi}{4}\right)^{2} \\
& n_{*}=n_{Y}=0 \Rightarrow 0.0 \text { Mopz } \\
& O_{0}(x, y, z, t)=C_{00} \cot (d z+b) a d z(\omega t+\Omega) \\
& \text { TWO PLANE WAVES }
\end{aligned}
$$

$$
\begin{aligned}
& c^{\prime}=\frac{c}{\sqrt{1-\left(\frac{\pi}{w}\right)^{2}\left(c^{2}\right)}}
\end{aligned}
$$

MAY insune (o,o) MoDe by unguring (B)

LANE MAVES:
ρ

$$
\begin{aligned}
& \frac{S X}{B}=p^{b} b^{2}
\end{aligned}
$$

$10-25-72$

$$
\begin{aligned}
& \left(-\frac{5 g^{2}}{\delta x}=\rho^{2}=6\right) \leftarrow \text { NGWTON'S LAW }
\end{aligned}
$$

SPECIEIC ACOUSTIC MPGDENCE AO O

$$
\begin{aligned}
& A e^{x k x}+B e^{21 x} \\
& =p C A^{a r}=\mathrm{BeAx}
\end{aligned}
$$

\pm CHARAGTERISTIC MMLDENCE … (c= $\sqrt{B /}$)

BOUNDRY CON DITIONS:

$$
\begin{aligned}
& \left.U_{1}\right|_{x=0}=\left.O_{R}\right|_{x=0} \Rightarrow A_{1}+B_{1}=A_{2} A_{2} \\
& \left.U_{L}\right|_{x=0}=\left.U_{1}\right|_{x=0} \Rightarrow \frac{A_{1}-B_{1}}{C_{1}}=P_{1}=C
\end{aligned}
$$

$$
\therefore \frac{A_{1}+B_{1}}{A_{1}-B_{1}}=\frac{P_{0} C_{2}}{P_{1} C_{1}}
$$

$\triangle 6$

$$
\frac{B_{1}}{A_{1}}=\frac{\frac{p_{2} c_{2}}{c_{1} c_{1}}-1}{\frac{B_{2} c_{2}}{D_{1} c_{1}}+1}
$$

similarey; $A_{1} \|$ a $p_{2} C_{2}\left(p_{1} c_{1}+p_{2} C_{2}\right)$
THEN:

$$
\begin{aligned}
& Q_{i}=A_{1} e^{i c u-1+\lambda)} \\
& O_{n}=\frac{p_{2} c_{2}-1}{p_{2} c_{n}+1}
\end{aligned}
$$

PHASEs (a BOVADRY

$$
\begin{aligned}
& Q_{1 \times 0}=A, Q^{1 k \omega t} \\
& \left.P_{1}\right|_{x=0}=\frac{\rho_{2} c_{1}-1}{\rho_{2} C_{0}+1} A e^{\text {int }} \\
& \text { H SIGN De IEPMMNE } \\
&)\left._{\%}^{\infty}\right|_{x=0}=\frac{2 p_{0}=}{p_{1}+\tan A_{1}, \operatorname{tat}}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{t}=A, e^{i\left(\omega t-L_{1}\right)} \\
& \text { O, } \left.=1, Q \text { icut-k, } e^{2}+\cos +1, x\right)
\end{aligned}
$$

$$
\begin{gathered}
\left.x=q^{x} x^{i(u t+k}\right) \\
p_{r_{1}}=a_{1} e^{i(w t+k, x)} \\
\left.a_{2}=a_{2} e^{(w,}\right)
\end{gathered}
$$

SHMMINS AFTER TRANSIENTS

$$
\frac{A_{5}}{A_{0}}=p_{2}^{2} c_{5} c_{2} p_{2}
$$

$$
\begin{aligned}
& \text { Boundry Conottions } x=-L \\
& P \Rightarrow A_{1} e^{i k_{1}+B e^{-i k h}=A_{2} e^{i k 2}+B_{2} Q^{-K} L_{2} L}
\end{aligned}
$$

$$
\begin{aligned}
& =r_{12} \frac{e^{j k_{2} h_{23}} e^{-i k_{2} L_{2}} \frac{r_{2}+1}{r_{23}+1} e^{i t_{2} L}}{e^{-k L_{2}}} \\
& =r_{12} \frac{2 r_{23} \cos k_{3} L+2 i \sin k_{e} L}{1+2 \operatorname{lan} L}
\end{aligned}
$$

$$
\begin{aligned}
& \vartheta_{x=0} \Rightarrow A_{2}+B_{2}=A_{3} \\
& U_{x=0} \Rightarrow p_{2}-B_{2}=\frac{A_{2}}{A_{2}} \\
& =\frac{E_{2}}{A_{2}} \frac{e_{2} c_{2}}{\rho_{3} c_{3}+1} \rho_{0}+1 \quad \frac{r_{2}-1}{r_{2}+1}
\end{aligned}
$$

$$
\frac{B_{1} e^{-i t} t}{A_{1} e^{-1, t}=}=
$$

$$
10-26-72
$$

ALGEBRA FROM ABOUE

$$
\begin{gathered}
\operatorname{cHOOL} k_{=}=\frac{\pi}{2} \frac{3}{1}, \frac{5}{1}, p_{2}, C_{2}=\sqrt{\left.\left(p_{1} c_{1}\right) p_{3} c_{3}\right)}
\end{gathered}
$$

$$
\Rightarrow 1,=0
$$

$$
\begin{aligned}
& a^{2}=A C^{e(\cot -L x)} \\
& V=A Q \cot -k(x \cos \phi+4 \sin d
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lefar ery }
\end{aligned}
$$

$$
\begin{aligned}
& Q_{r}= \\
& U n=\frac{b}{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Uneic }
\end{aligned}
$$

BOUNRRY CONDITIONS

$$
\begin{aligned}
& \left.P_{2}\right|_{x=0}=\left.O_{n}\right|_{x=0} \\
& \quad=A_{1} e^{i f(\omega t-\min }+B_{1} e^{i\left(\omega t-k_{1} \operatorname{An} \phi 7\right.} \\
& =A_{2} e^{i \omega t-A_{2} \sin \phi_{2}} \\
& \Rightarrow B_{1}+B_{1}=A_{2}
\end{aligned}
$$

COMPONENT NORMAL..TO ROUNDRY|X=OCOMP DFULTO BOUNDRY $\left.\right|_{K=0}$

U

$$
\begin{array}{r}
\left.\Rightarrow\left[u_{1} \cos \phi_{1}-u_{n} \cos _{2} \phi_{2}\right]\right|_{x=0} \\
=u_{t} \cos \phi_{1} \mid x=0
\end{array}
$$

$$
\left[\frac{A_{1}}{\rho_{1} c_{1}}-\frac{B_{1}}{\rho_{1} c_{1}}\right] \cos \phi_{1}=\frac{A_{2}}{p_{2} c_{2} \cos \phi_{2}}
$$

$$
\Rightarrow \frac{A-B}{A+B}=\frac{p_{2} c_{2}}{\rho_{1} C_{1}} \frac{\cot \phi_{2}}{\cot \phi_{1}}
$$

$$
p_{2} \cos _{2} \cos \frac{d}{2}-1
$$

$$
\frac{B}{A}=\frac{p_{2} c_{0} \cos \phi_{1}-1}{p_{1} c_{1} \cos \phi_{1}+1}
$$

$1 \mathrm{co} \frac{p_{2} c_{2}}{p_{1} c_{1}} \frac{\cos t_{1}}{\cot \phi_{1}}=1 \Rightarrow \cos \phi_{1}=\frac{p_{2} c_{2}}{p_{1} c_{1} \cot \phi_{2}}$ fROM RERRACTION $\Rightarrow \operatorname{Lin} \phi_{1}=\sqrt{\frac{\rho_{1}\left(\frac{1}{C_{1}}\right)^{2}-\rho_{2}^{2}}{\rho_{1}^{2}-\rho_{0}^{2}}}$

ENERGY

$$
\begin{aligned}
Q & =A e^{i(\omega t-k x)} \\
d F_{E} & =p d s \\
s t & =P d s U \quad(f \omega)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A^{2} d s}{p a r} \int_{0} \operatorname{tar}(a t-k x+\infty) d t \\
& =\frac{A^{2}}{2} d s \\
& \text { RATE } \\
& I \text { = INTENT = UN AREA PWHCH ENERGY CROSSES A } \\
& I=\frac{A^{2}}{2 B}
\end{aligned}
$$

SO ENERCY GGONDRY GOMDTONS:

$$
\begin{aligned}
& \text { RECALL } \\
& \frac{B_{1}}{M_{1} 1}=\frac{r_{1}+1}{r_{2}+1}
\end{aligned}
$$

(GO FORWARD 5 RGS TO $10-30-72$)

$$
10 \cdot 31-72
$$

DUE TUES.
IN Book $7.4,7.8,7.15,7.20$

sATISEY THE WAVE EGUNTION?

$$
P(r, t)=\frac{A}{r} e^{i(\omega+\omega)}
$$

$$
U=\frac{A}{V} e e^{i(u t-\operatorname{tar})}
$$

PULSATING SPHERE

$$
U_{S}=U_{0} e^{i \omega^{t}}
$$

$$
z_{i} e^{n z^{t}}=\frac{A}{a z_{n a}} e^{i \omega t} e^{i k a}
$$

$$
\Rightarrow A=a v_{0} e^{2 k a} z_{n a}
$$

eika nné (coakaténimka) $\left[\frac{p e k q(k q+i)}{1+k a)^{2}}\right]$

$$
\begin{aligned}
& {\left[k a(k a+i)(1+k a)^{2}\right.} \\
& =p \in[k a) \\
& {\left[k a-(k a)^{3}+i-i(k a)^{2}\right] } \\
& =p<i k q
\end{aligned}
$$

ANA $O(\rho, t)=\frac{A}{R}$ icut-kr)

$$
\begin{aligned}
& =\text { Apka Vo e (ate-kx) }
\end{aligned}
$$

$$
\begin{aligned}
& p=\frac{i p c k Q m}{2 \pi n} e^{\hat{k}(\omega \vec{m}-k r)} \\
& \left.\lambda=\frac{2 \pi}{k}\right\rangle>\operatorname{soukc} \text { QIMENSIONS }
\end{aligned}
$$

r

$$
Q_{5}-Q_{1}
$$

Tr AT rHESE CONDITIONS, ANY SOUR CE WHL ACT HRE THE HEMISRHERIOAL SOUREE

$$
\begin{aligned}
& d P=\frac{R p c t s d s}{2 \pi r}(a(\omega t-k r)
\end{aligned}
$$

for raveré

$$
r=\frac{r Q d s e}{2 \pi r} \cdot e^{\text {tat-knt } m a^{2}}\left(o^{m o m e r}\right)
$$

$$
=\frac{p c k \theta}{2 \pi r} e^{\text {in mt k }} \int_{0} d d d_{0}^{a} e^{i k \varepsilon \sin \theta \sin \phi}
$$ $E d \leq$

$B=t k \sin \theta \sin \phi$

$$
\int^{9} \varepsilon^{e^{2}}=d \xi
$$

$d o+d=\quad V=\frac{1}{s} e^{d e}$

$$
\begin{aligned}
& =a^{c a g}-\frac{1}{b^{2}}[b d a-1] \\
& -\left[\frac{a}{2}-\beta\right] \text { e } B a-\frac{1}{3} \\
& \int d \phi \int e^{\beta} d E=\int d p\left(\left[\frac{a}{\beta}-\frac{1}{b}\right]\left[1+\beta a+\frac{\beta a)^{2}}{2}+\frac{(a)}{2}\right)^{2} \ldots\right] \\
& =\int d \phi\left[\frac{a}{\beta}+a^{2}+\frac{a^{3} d}{2!}+\frac{a^{4} a^{2}}{a^{2}}+a^{4}+\frac{b^{2}}{4!}+\right.
\end{aligned}
$$

$$
\begin{aligned}
& r^{\prime}=\sqrt{(0-x)^{2}+(Y-Y)^{2}+(z-0)^{2}} \\
& =\sqrt{x^{2}+Y^{2}+Y^{2}+Z^{2}-2 Y Y} \\
& x=E \cos \phi ; y=5 \operatorname{tin} \phi \\
& \frac{Z^{2}+Z^{2}-r^{2}}{\sqrt{\varepsilon^{2}} r^{2}-2 r} \frac{Y}{2}=r \sin \phi \\
& \Rightarrow r^{\prime}=\sqrt{E^{2}+r^{2}-2 r, \operatorname{Anc} \theta \operatorname{Ang}} \\
& =r\left[1+(E)^{2}-2 \frac{1}{r} \sin ^{2} \operatorname{din} \theta\right]^{12} \\
& \text { Now } a<1 \Rightarrow \frac{G}{r} \ll 1 \\
& =\operatorname{Now}\left[1+\frac{1}{2}\left(\frac{\varepsilon}{r}\right)^{2}-\dot{S} \sin \theta \sin \phi\right] \\
& =r[1-\xi \sin 0 \sin \phi]
\end{aligned}
$$

$$
\begin{aligned}
& =a^{2} \int_{0} d \phi\left[\frac{1}{2}+\frac{e^{2}}{3}+\frac{e^{2} a^{2}}{2}+\frac{b d}{3 a}+\ldots\right] \\
& =a^{2} \int_{0}^{2 \pi}\left[\frac{1}{2}+i k a \sin \theta \sin d+\left(\frac{1}{2} \tan \theta \sin \phi\right)^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \pi a^{2}\left[1-(\operatorname{kan} \theta)^{2}+\left(\tan (\tan \theta)^{4}+\ldots\right]\right. \\
& =\pi a^{2}\left[\begin{array}{c}
2 u_{0}(k a \sin) \\
\text { katime }
\end{array}\right]
\end{aligned}
$$

(60 up to 11-1.72)

$$
10 \cdot 30 \cdot 72
$$

spherical waves

$$
\begin{aligned}
& \rho=-B_{q}\left[\frac{\delta S}{\delta x}+\frac{b n}{\delta \eta}+\frac{b \rho}{\delta z}\right]=-B_{a} \text { div } \vec{i} \\
& - \text { guad } \beta=\rho \frac{b^{2} t^{2}}{S t^{2}}=\rho \frac{6 v}{E t} \\
& \vec{u}= \begin{cases}A_{r} & \vec{v}=\left\{\begin{array}{l}
v \\
A_{0} \\
A_{Q}
\end{array}\right. \\
\omega\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow c^{2} \text { dimgrad } p=\frac{d^{2} d}{s t}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{52 p}{t^{2}} \\
& \text { ver } Q(r, t)=R(r) H(t) \\
& \Rightarrow \frac{c}{r}\left[\frac{d}{d r} r^{2}+\frac{2}{r} d r\right]=\frac{1}{d r} d^{2} d^{2}=-t^{2} \\
& \Rightarrow H=a_{2} \text { cot at }+b_{2} \text { minate } \\
& \text { nNo } \frac{d^{2} R^{2}}{n^{2}}+\frac{2}{n} \frac{d R}{d r}=-k^{2} R \quad \geqslant k=W / 2 \\
& \frac{d^{2}}{r^{2}}(r R)=-k R R \\
& \Rightarrow r R=a, 002 k r+b, \operatorname{minkr} \\
& \therefore R=\frac{a_{1}}{r} \text { cos krt } b_{1} \text { ainker } \\
& \Rightarrow P(r)=\frac{n}{r} \operatorname{cog}(k r+7) \cos \left(\cos ^{2}+P\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\operatorname{grad} p=\rho \frac{s^{2} t}{\delta t^{2}}=\rho \frac{s \vec{v}}{\delta t}
\end{aligned}
$$

$$
\begin{aligned}
& P(r, 4)=\frac{A}{r} e^{i\left(\omega l_{t-k r)}\right)} \\
& p \frac{d x}{\left[\frac{1}{2}\right.}=-\left[\frac{A}{r} e^{i(\omega t-k V}+\frac{A}{n}(\operatorname{ki} k) e^{i(\omega t-k V)}\right] \\
& u=-\left[-\frac{A}{r^{2} \mu} e^{i(\omega t-k n)} \frac{A(-2 k)}{\Gamma(\omega)} e^{i(\omega t-k n)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { DEEINE THE SPECIEIC ACOOSTIE IMREDENEE } \\
& \begin{aligned}
z=\frac{p}{u} & =\frac{p c k r(k r+i)}{\operatorname{lkLR}^{2}\left(r^{2} i \alpha\right.} \\
& =\alpha=\tan ^{-1}\left(\frac{1}{k r}\right)
\end{aligned} \\
& I=\frac{1}{T} \int_{0}^{\gamma} \beta U_{A} d \frac{t}{1+} \\
& U_{R E A L}=\frac{A \sqrt{1+\left(K V^{2}\right.}}{\rho C^{K} r^{2}} \cos (\cos t-k r+\psi+\alpha)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{A^{2}}{2 \rho C r^{2}}
\end{aligned}
$$

PULSATING SPHERICAL SODREE

$$
\begin{aligned}
& V_{s}=U_{0} e^{i \omega t} \\
& O=\frac{A}{r} e^{i(\omega t+r)} \\
& V=\frac{A}{r z} e^{1(\omega t-k r)} \quad z z=\frac{\rho c k r(k r+i)}{\left[1+(k r)^{2}\right]} \\
& V_{s}=\left.v\right|_{r=a} \\
& V_{0} e^{i \omega t}=\frac{A}{a z z_{0}} e^{-i k a} e^{i \omega t} \\
& A=\left.v_{0} e^{i k a} z_{m}\right|_{r=a} \\
& \left.e^{i k a z}\right|_{r=a}=(\cos k a+i \sin k q)\left(\frac{\operatorname{cca} k(k a+z)}{1-(k a)^{2}}\right]
\end{aligned}
$$

GO BACK TO 10.31 .72
$U_{0} \mathrm{C}^{2} \operatorname{con}$

$$
1,=0<3.53,7.03,10.17
$$

So WHEN Ainelaa. 3. B. 3. 7.02, $10.13 .$.

$$
\begin{aligned}
& =\frac{3 \Delta 3 \lambda}{2 \pi}, \frac{7.02 \lambda}{\pi / 4}
\end{aligned}
$$

(HKE LEAT GIUIME GESSEL FUNCTION)

$$
\text { LET } a=10 \lambda
$$

$\Rightarrow 6.28 . \operatorname{Ha}=3.63, \cdots \quad \Rightarrow$ NO $30 L U T O N$ fon

$$
\begin{aligned}
& d \rho=\frac{i p c k U d s}{2 \pi r^{\prime}} e^{i\left(\omega t-k r^{\prime}\right)} \\
& P=\int \frac{\text { inde } U_{0}}{2 \pi e^{v i r}} 2 \pi \& d \xi e^{\dot{2}\left(\omega t-k \sqrt{2}+r^{2}\right.} \\
& =i p \operatorname{cov} U^{i \omega t} \int \frac{\sum t \xi e^{-i k \sqrt{E^{2}+r^{2}}}}{\sqrt{\xi^{2}+r^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& -\infty-\operatorname{ck}
\end{aligned}
$$

AGAMN

$$
z_{1}-z_{2}=1 z_{1} z_{2} / e^{i \psi}
$$

$$
\begin{aligned}
\left|z_{1}-z\right| & =\sqrt{1+1+2 \cot \left(\theta_{1}, 0_{2}\right)} \\
& =\sqrt{2} \sqrt{1-\cos \left(\theta_{2}\right)} \\
& =\sqrt{2}+1 \frac{\theta_{1}}{2}
\end{aligned}
$$

$$
2 \alpha+\left(\theta_{1}-\theta_{2}\right)=150
$$

$$
\Rightarrow\left|z_{1}-z z_{2}\right| \sin \frac{\theta_{1}-\theta_{2} e^{-\mu} \theta_{2}\left(\theta_{1}\left(\theta_{2}\right) / \theta_{2}\right) / 2}{2}
$$

$$
=2 \sin \lim _{2} e^{-i\left(\theta_{1} \theta_{2}\right) / 2}
$$

$\therefore \beta=i \rho c U_{0} e^{\operatorname{stc}} \operatorname{din} \frac{\theta_{1}-2}{2} e^{0}+\theta_{2}$

$$
=-p o U_{0} e^{i+2 t}\left[z_{1}-z_{2}\right]=0 \text { ron } \theta_{1}=0_{2}+\tan
$$

on k $\sqrt{r^{2}+a^{2}}-k r e n 2 \pi$

$$
\sqrt{r^{2}+a^{2}}-r=n \lambda=\lambda, 2 \lambda, 3 \lambda, \ldots
$$

$$
\begin{aligned}
& =-p c U_{0} \sin \frac{\theta_{0}-\theta_{2}}{\left(\pi r^{2}+a^{2}\right.}\left[\operatorname { s i n } \left(\omega_{t}-\frac{\left.\theta_{1}+\theta_{2}\right)}{k_{1+2}+a}\right.\right. \\
& =\beta \cos \sin \left(\frac{\left.k r^{2}+a^{2}-k r\right)}{2}\right) \sin \left(\cot -\frac{k \sqrt{1-a}+k+1)}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 0=\operatorname{poU}_{0} e^{\& \omega t}\left[e^{-i k \sqrt{a^{2}+r^{2}}}-e^{-i k n}\right] \\
& \left.\begin{array}{rl}
\operatorname{LET} z_{1} & \left.=e^{-n / \sqrt{r^{2}+a^{2}}} ; z_{2} e^{\tan }\right\} \\
\theta_{1} & =k \sqrt{r^{2}+a^{2}} ; \delta_{2}=k n
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{r_{\text {mos }}^{2} \text { netman }}+q^{2} \cdot r_{\text {most }}=\lambda \\
& r_{M} a^{2}=\lambda^{2}+2 r d^{2}+r^{2} \\
& \text { Moer oner }=\frac{a^{2}-\lambda^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& d p_{m} \frac{i p c k U}{2 \pi k U} d s m
\end{aligned}
$$

$$
\begin{aligned}
& \text { (dfam } x_{x}=\frac{i p c t e b_{s}}{2 \pi r} \text { dsmdsn } \\
& =\left(d f_{m n}\right) x \\
& F_{x}=\left[\Delta P_{12}+\Delta P_{13}+\Delta P_{14}{ }^{+}+\Delta P_{80}\right]_{\Delta} S_{1} \\
& -\left[\Delta P_{21}+\Delta P_{2}+\Delta P_{24}+\ldots+\Delta P_{2 n}\right] 8 S_{2} \\
& -\left[\Delta P_{3}+\Delta B_{2}+\Delta P_{2}++\Delta P_{3,}\right] \dot{B}_{3}
\end{aligned}
$$

$11 \cdot 2 \cdot 72$

$$
\begin{aligned}
F_{x}= & -\left[\Delta P_{12} \downarrow \Delta P_{13} t \Delta P_{14}+\Delta P_{1}+\ldots+\Delta P_{1 N}\right]_{\Delta S} \\
& -\left[\Delta R_{2}, D P_{23}+\Delta P_{24}+\Delta P_{3}+\cdots\right] \Delta S_{3} \\
& -\left[\Delta R_{3}+\Delta R_{2}+\Delta P_{34}+\ldots\right] \Delta S_{4} \\
& -\left[\Delta Q_{41}+\Delta P_{42}+\quad\right] d S_{4}
\end{aligned}
$$

$$
F_{x}=-2 \sum_{m=1}^{N} \Delta \operatorname{Sm} \sum_{n=m+1}^{N} \Delta p_{m n}
$$

$$
\begin{aligned}
& =2 \rho c U_{0} e^{i \omega t} \int_{0}^{a / 2} R d R \int_{\pi / 2}^{m} \int_{0}^{2 R e \eta_{i}} k^{i k o d \phi}
\end{aligned}
$$

$$
\begin{aligned}
& =42 p \in U e^{i \omega^{t}} \int_{0}^{t} R d R \int \pi / 2[1-i k 2 R c a s \%
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{\left(-i k^{2} k \cos \psi\right)^{t /}}{4!}+\ldots-i\right] d y
\end{aligned}
$$

$$
\begin{aligned}
& \left.-i k 2 \pi d i n y \sqrt{W_{2}}\right] \\
& \text { - 2pcU是 } \int R d R\left[-k^{2} 2 R^{2}\right. \text { 立. } \\
& =20 c U^{e^{20 t}} \int_{e^{2}}^{2} R d R\left[k^{2} R^{2} k^{2}+\ldots+\ldots(k 4 R+\ldots)\right] \\
& =-2 p C^{2}\left[A+1 q^{4}+\ldots+2\left(\frac{14 a^{2}}{3}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text {-pcUoe iwt } \pi a^{2}\left\{R_{1}(2 \dot{k a})+\text { i丸 },(2 k a)\right\} \\
& \text { - } R_{1}(2 k a)=\text { PISTON RESISTANCE FUNCTION } \\
& x(2 k a)=\| \text { REACTANEE.." } \\
& \frac{1 \begin{array}{c}
\mathrm{R}(2 k a) \\
x(2 k a)
\end{array}}{2 k a}
\end{aligned}
$$

RADATION IMPEDANCE OF THE PISTON

$$
\begin{aligned}
z_{R} & =\frac{x \text { COMPQNENT OE FORCE EKERTED EY PISTON }}{\text { ON WLOCITY OF FISTON }} \\
& =\text { peHa2 }\left[R_{1}(2 k a)+i X(2 k a)\right]
\end{aligned}
$$

WITH WAVE

$$
\begin{aligned}
& m \text { 苋 }+R x+k x=F_{0} e^{i \omega t}-z_{m} U_{0} e^{x \omega t}
\end{aligned}
$$

ENERGY Con TEST?)

$$
\begin{aligned}
& d w=E \cdot d S \\
& \frac{d w}{d x}=F \cdot d V
\end{aligned}
$$

ave nt. of enangy desfathone $\frac{1}{T} H_{R}\left(x_{0}\right)^{2} d t$ $\operatorname{rok} x=\frac{F_{0} e^{i \omega t}}{z_{m} Z_{k}}$

$$
\begin{aligned}
& E_{\text {AIL }} \frac{t}{t} \int_{0}^{\eta}\left(p c \pi a^{2}\right) R_{1}(2 k q) U_{0}^{2} \cos ^{2}(a t+\phi) d t \\
&=p c \pi a^{2} R_{1}(2 k a) U_{0} / 2
\end{aligned}
$$

RESOMATORS

HEMHOLTE
RESONATOR

1

$$
\begin{aligned}
& P\left(\pi a^{2}\right)-\left(8-A e^{i \omega t}\right) \pi a^{2}=\rho \pi a^{2} h \frac{b^{2} x}{s^{2}} \\
& \text { ASOME PV GONSTANT } \\
& \Rightarrow d P=\frac{d P_{0}}{V_{0}} d V=P=P_{0} \\
& d V=\pi a^{2} X \\
& \Rightarrow p=p_{0}-\frac{0 p_{0}}{V_{0}} \Pi a^{2} x \\
& \Rightarrow P_{0} \pi a^{2}-\frac{\gamma p_{a}}{V_{a}}\left(\pi a^{2}\right)^{2} x-p_{0} \pi a^{2}+A \pi a^{2} e^{2 d t} p \pi a^{2} \frac{1}{2}^{2} x
\end{aligned}
$$

ONAACASOMHEONTANT

$$
\pm d \theta=\frac{d P_{0}}{V_{0} d}
$$

$$
\Rightarrow m^{\prime} \dot{x}+R \dot{x}-\frac{\gamma p_{0}}{V_{0}}\left(\pi \sigma^{2}\right)^{2} x=A \pi \sigma^{2} e^{i \omega t}
$$

$$
\begin{aligned}
& 11-6-72
\end{aligned}
$$

LE

$$
\begin{aligned}
& k_{0}=\frac{\left.d C_{0}(m)^{2}\right)^{2}}{F_{0}=A M a^{2}} \text { "ut }
\end{aligned}
$$

$$
-j 5 e^{6 \omega t}
$$

$$
x=\frac{-1+c}{w[h+i(w m-1 / w)]}
$$

$$
=\frac{d P_{0}}{V_{0}} \Pi a^{2} \frac{f_{0}}{R^{3}\left(a m \cdot Q_{a}\right)^{2}} \operatorname{dic}(\cot -0 \alpha)
$$

RESONANEE: Cunss $=\sqrt{k / m} \quad$ EbR x

$$
\text { whes }=\sqrt{\frac{1}{1}-\frac{\sqrt{2}}{2 n}} ? \quad \text { ear } x
$$

BUT, ITS SEOD THUEE TO USE:

$$
\begin{aligned}
u_{n=s} & =\sqrt{\frac{b}{m}}=\sqrt{\frac{P_{0}\left(\pi q^{2}\right)^{2}}{V_{0}}}=\sqrt{\frac{\partial_{0}\left(\pi p_{0}^{2}\right)^{2}}{V_{0}\left(\pi q^{2}\right)}} \\
& =\sqrt{c_{0}^{2}\left(\pi a^{2}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& y \dot{x}=\frac{\text { Foecest}}{R+\cos =1 \cos)}
\end{aligned}
$$

NO NEER:
$A^{!}$= LEEECTUE LENETH

$$
x^{\prime}=\frac{16}{31}
$$

QUINE PLAHE WAMES
$m \dot{x}_{p}+R \dot{x}_{p}+R x=r_{p} \sin _{0}$
FOR AO REGEEEGGD WAVES

BUT WAVES GME MORE MASS AND K

$$
\begin{aligned}
& \text { WAvE N PHEE }
\end{aligned}
$$

$$
\begin{aligned}
& . U\left(x=B^{\prime}=0\right.
\end{aligned}
$$

$$
\begin{aligned}
& U=\frac{1}{p e} i \text { Lin kx e iel }
\end{aligned}
$$

$$
\begin{aligned}
& \text { YHELANE }
\end{aligned}
$$

$$
\begin{aligned}
& 2 m+2 n-i p e s a a t h=\frac{\text { Foetut }}{x} \\
& x^{2}=\frac{F_{0} e^{2+2} t}{z_{n}+\Delta \leq S c+L L}
\end{aligned}
$$

$$
\begin{aligned}
& 11>2 m \gg 2,-i p \sin k L
\end{aligned}
$$

$$
\begin{aligned}
& F_{0} e \text { wh } \\
& =\left\{\left[p e s R_{1}(2 k a)\right]^{2}+\left[p c s[X(2 k a)-c a t k b]^{2}\right\}^{2}\right.
\end{aligned}
$$

$\dot{x}_{\text {Mar per }} \cot k L=$ X(2ka)
CONSTANT
$Z_{m} \gg Z_{n-i p e s c o t} L$ so anve prpe wITA A SPEAKER
$11-7 \cdot 72$

MARMONRCSE $1,3,5,7, \ldots$

$$
\begin{aligned}
& \text { - } \quad \text { AQ eutinkl }
\end{aligned}
$$

$$
\Rightarrow\left[\frac{A_{1}}{p e}-\frac{B_{1}}{p a}\right] e^{i \omega e}=U_{0} e^{i m e}
$$

$$
\begin{aligned}
& P_{X=0} F R O M \text { VIB } \triangle P_{X=0} E X T E R N A L:
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow A+B=z_{n} \text { UoLs }
\end{aligned}
$$

$$
\begin{aligned}
& P=A e^{i(\omega t-k x)}+B e^{i(\omega t+k x)} \\
& \mu=p^{\frac{A}{C}} e^{i(\omega t+1)}-\frac{B^{B}}{p^{2}} e^{i(\omega+p k)} \\
& \left.\mu\right|_{x=0} ^{p}\left[\rho_{\varepsilon}-\frac{B}{p}\right] e^{i \omega t}=v_{0} e^{i \omega t} \\
& -F_{x}=\rho \subset \pi a^{2} U_{0} \rho_{0} e^{\text {éwe }}\left[R_{1}+r_{1} \hat{x}_{x} \chi_{1}\right] \text { @x=0 } \\
& \Rightarrow P=e c s v_{0} e_{s} r_{1}+r_{1} \times \hat{I}_{1}
\end{aligned}
$$

 pe Fe[2rtocs]
$\Rightarrow A=\left(z_{r}+z_{m}\right)\left(22 z_{n+1}+6+2 \rho C \cos k Q \geqslant 0 \leq\left[2 z_{n} \cos h\right.\right.$

4
Fok $z_{m}>Z_{n}$

$$
\text { Fols }\left[R_{1}+\dot{x}\right] \text { e } \mathrm{F}_{2}^{2}
$$

$$
=\left[\left(R+i x_{1}\right)^{2}+1\right] d A \operatorname{le} L+2\left(R_{1}+x_{1}\right) \cos L
$$

$$
F_{0} r_{s} \sqrt{R_{1}+x^{2}} e \operatorname{tos} \operatorname{cost}^{2}
$$

$P /_{x=0}=\left[\left(R_{1}-x_{1}^{2}+2 x_{1} R_{1}\right)+1\right] i A_{i} R_{C}+2 R_{1} a+d /+2 i x_{1}$ cot KL
woers obl DENOMMATOR
FO/S $\sqrt{R 1^{2}+x^{2}}$
Gda ub
casse X_{1} 夅r, ARE Teani
RESOMANCE O ABGUT laL NT

$$
\begin{aligned}
& \text { RECAEL: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WAVES IN VIPLS } \\
& S_{4} P_{i} P_{r}=P_{t} \quad S_{2} \\
& 0^{2}=\| \theta+4(4)-(x)
\end{aligned}
$$

$$
\begin{aligned}
& L_{R} E A R E A(\cot -k x) \\
& \text { Helnapy CoNDITHOMS? } \\
& \text { i) } 0,14=e=0 \quad 1+0
\end{aligned}
$$

YBELDNE:

$$
\begin{aligned}
& \frac{A_{1}+D_{1}}{A_{1}-1,}=\frac{51}{5}=\frac{1}{A}=\frac{5}{5}+1
\end{aligned}
$$

$11-9=72$
ACOUSTIC IMPEDANCE

 $\Rightarrow z^{*}=\frac{p \in \frac{A}{} e^{-i k x}+B e^{i k R}-B e^{i k x}}{A e^{i k}}$ FOR A SINGLE WAVE (ia BEO)

$$
z *=\frac{p c}{5}
$$

$$
\begin{aligned}
& \left.P_{L}\right|_{x=0}=\left.0\right|_{y=0}=\left.0\right|_{x=0} \\
& U_{1=0} S=U_{D=0} S_{b}+U_{2} S_{S=0} \\
& {\left[\frac{\nu_{a} s}{d}=\frac{v_{b} S_{b}}{\partial_{b}}+\frac{\nu_{t} S}{d}\right]_{x=y}=0}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{1}{Z^{*}}=\frac{1}{2 b^{\text {m }}}+\frac{1}{2^{*}} \\
& \rightarrow z^{*}=\frac{z_{b} z_{t}^{*}}{z_{i}^{*}+z_{t}} \\
& \operatorname{Le} \frac{A_{1}+B_{1}}{A_{1}-B_{1}}=\frac{\sum_{b}^{*} P_{5}}{2_{B}^{2}+C_{S}} \\
& \frac{A_{1}+B_{1}}{A_{1}-B_{1}}-\frac{2 b}{2 b+P C S} \\
& =\frac{B_{1}}{A}-\frac{z_{b}-\left(z_{b}+\frac{p c}{5}\right)}{Z_{b}+\left(\sum_{b}+\frac{p}{5}\right)} \\
& \frac{-\rho c<5}{2 z_{b}+\frac{\rho C}{5}} \\
& -\frac{\Delta p c<2 s}{z b^{4}+P C R e}
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{A}_{1}+\hat{B}_{1}=\hat{A}_{2} \\
& 1+\hat{A}_{1}=A_{1} \\
& \Rightarrow \frac{A_{2}}{A_{1}}=1-\frac{A_{b}+S_{5}}{S_{5}} \quad \frac{-2}{z_{b}+C_{2}}
\end{aligned}
$$

$$
\frac{\left.120\right|^{2}}{00}
$$

Thus $a=\left.\left|z_{b}+z_{b}\right|_{2 s}\right|^{2}$

Fur AnY pontic $A_{\mu} e^{-i k y}$ - Bpeniky

$$
\begin{aligned}
& z_{b}=\frac{D_{c}}{S b} \frac{A_{b} e+k y+B_{b} B_{b}+k}{A_{b}} \\
& \left.z_{b}\right|_{y=0}=\sum_{s_{b}}\left[\frac{A_{b}+B_{b}}{A_{b}-B_{b}}\right] \\
& =\frac{\Delta C}{S_{b}}\left[\begin{array}{l}
A_{b}+A b A_{b}-20 ゙ k L \\
A_{b}-2 k L
\end{array}\right] \\
& -\frac{D C}{e^{i k L}+e^{-i k L}} e^{\text {int }} \\
& -\frac{-i p e}{s b} \cot k 4
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{b}=A_{h} e^{e(\omega t-k y)}+B_{b} e^{e(\cot (\operatorname{tat})} \\
& U_{b}=A_{L} e^{i(a t e v e r}+\rho_{B}^{B} e^{\text {ur (atthx) }} \\
& \begin{aligned}
\left.u_{b}\right|_{Y=L}=0 & \Rightarrow \frac{A_{b}}{\rho_{0}} e^{-i / L}+\frac{B_{b}}{B_{b}} e^{i k L} \\
& \Rightarrow \frac{A_{b}}{A_{b}} e^{-2 K L}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{LE} \quad z_{b}=R_{b}+X_{b} X_{b}\left|z_{b}\right|^{2}=R_{b}^{2}+x_{b}^{2} \\
& \left.z_{b}+\frac{c^{c}}{D c^{2}}=P_{b}+\frac{P_{c}}{S_{C}}\right)^{2} x_{b} \\
& \left.\Rightarrow 12_{b}+\frac{D C}{2}\right)^{2}=\left(R_{b}+\frac{P C}{2 S}\right)^{2}+x_{b}{ }^{2} \\
& \text { - } A_{t}=\frac{R_{b}^{2}+x_{b}^{2}}{\left(R_{b}+\frac{R_{2}^{2}}{2}\right)^{2}+R_{b}^{2}}
\end{aligned}
$$

HEMHOLTZ resonator

REVEW

$$
\begin{array}{r}
\text { PV'̆const } \Rightarrow d O_{B} y-\frac{d V_{0}}{\partial V_{0}} d V \\
V_{0}
\end{array}
$$

$m \leq=k s+\left[p_{0}-\frac{\sigma p_{0}}{V_{0}} \leq\right] S-\left[P_{0}-A e^{\text {dat }}\right] s$

$$
\sum^{2}=\frac{s A e^{k \cos t}}{\sum^{2}}
$$

$$
2 \sum_{n}+R+2\left(\operatorname{con}-K_{X}\right)
$$

WEED TO PATCH\%

BUT RAAK IS NEGLEBE: CNO ENERGY LOQS)

$$
\begin{aligned}
& \Rightarrow \sum^{4} \frac{S^{4} e^{n u t}}{\sum_{m}} \\
& \frac{\operatorname{Lax}_{2}}{52}=\frac{A e^{-i \omega}}{E \leq} \\
& Z_{t}=\frac{E^{2}}{s^{2}} \quad 2 t_{n}=R_{e f t}\left(w m_{0}+K\right)
\end{aligned}
$$

$$
\varepsilon \frac{I}{I} \bar{I}^{R} \frac{I}{T} c \quad t=R c
$$

EQUATING REAB ANO IMAGINARY PAREE:

$$
\left\{\begin{array}{l}
\frac{-\omega^{2}}{\left.c^{2}\left(1+\omega^{2} q^{2}\right)\right)}=\alpha^{2}-1, \alpha \\
\frac{\omega^{3} q}{c^{2}\left[1+(\omega)^{2}\right]}=218 \alpha
\end{array}\right.
$$

$$
\begin{aligned}
& x=\frac{B}{B} \\
& \text { GIVING } \frac{\delta^{2}}{\delta x^{2}}=-B_{a} \frac{S}{\delta x} \delta^{2} E^{2}-R \frac{S}{S t} \frac{S}{S x} \frac{S^{2}}{S t}
\end{aligned}
$$

$$
\begin{aligned}
& \text { is } p=A_{0} e^{-\alpha} e^{i}\left(\omega t-\cos ^{\prime} x\right) \text { A SOLOTION? } \\
& \frac{\beta z^{2}}{s z^{2}}=-\omega^{2} p \\
& \frac{\frac{10}{6 x}}{\frac{1}{2}}=-\alpha p=i k p \\
& \frac{\delta_{2}}{5 x^{2}}=\beta_{0}+i k^{\prime} \alpha \beta+i k^{\prime} \alpha \beta-k^{2} \rho
\end{aligned}
$$

$$
\begin{aligned}
& -\omega^{2}=c^{2}\left[\alpha^{2}+2 i k^{\prime} \alpha-k^{2}\right]+b^{2}+\left[i \omega \alpha^{2}-2 \omega k^{\prime} \alpha\right. \\
& -i \cos { }^{\prime 2} \\
& -\frac{\omega}{k}=\left[\alpha^{2}+2 k^{\prime} \alpha-k^{2}\right] \tan \left[\alpha^{2}+2 k k^{2}-k^{2}=\right. \\
& \frac{c^{2}}{c^{2}(1+i \omega t}=\alpha^{2}-t^{2}+2 i k \alpha
\end{aligned}
$$

$$
\begin{aligned}
& \text { STOKES SAID: } P=-B_{a} \frac{5 S}{2 x}-R \frac{G}{\delta t}\left(\frac{5}{5} \frac{0}{x}\right) \\
& \text { 11-14-72 }
\end{aligned}
$$

$$
\begin{aligned}
& e^{2\left[1+(\omega x)^{2}\right]}=\infty^{2}-\frac{\cos ^{4} \cot }{c^{4}\left[1+(\cos)^{2}\right]^{2} \alpha^{2}} \\
& \Rightarrow 0=a^{4}+c^{2}\left[1+(\cos)^{2}\right]-\frac{4 x^{2}}{4}\left[1+(4 y)^{2}\right] 4 \\
& x^{2-2 c^{2}\left[1+\omega \omega^{3}\right.}+\sqrt{\left(\omega^{2}[1+(\omega \gamma))^{2}\right.}+\frac{\omega^{2}+72}{e^{4}\left[1+(\omega \gamma)^{2}\right]^{2}} \\
& \text { WHiCH BOwS DOWN TC: } \\
& \left.x^{2}=\frac{\omega c^{2}\left[1+(\omega \gamma)^{2}\right]}{2 c^{2}} \frac{1}{2} \frac{\omega}{2}[1+6 \omega)^{2}\right] \sqrt{1+\omega)^{2}} \\
& =\frac{\omega^{2}}{\left.2 c^{2}[1+67)^{2}\right]}\left[\sqrt{1+(07]^{2}}=1\right] \\
& \alpha=\sqrt{2} \mathbb{N} \sqrt{1+(\omega)^{2}}\left[\sqrt{1+(\omega)^{2}}-1\right] / 2 \\
& \text { THEN: } \\
& 4)^{2} 9 \\
& \left.k^{\circ} \frac{2 a y}{\sqrt{2 c \sqrt{1+\omega)^{2}}}} \sqrt{1+(\omega 1)^{2}}-1\right]\left(2\left[1+(\omega)^{2}\right]=C^{2}\right. \\
& \text { NO } c^{\prime}=\left[\frac{\sqrt{2} \sqrt{1+(\omega)^{2}}}{\omega 1}\left\{\sqrt{1+(\omega)^{2}}-1\right\}^{1 / 2}\right] C_{C}
\end{aligned}
$$

LET $\operatorname{LTY} \lll$

$$
\operatorname{HHN} \sqrt{1+\left(\omega^{2} 2\right)}{ }^{2}=1+\frac{1}{2}(\omega+)^{2}
$$

AND

$$
C^{6}=\frac{x}{2 C}=\frac{x}{w 2}=\frac{y}{2}
$$

$\angle E T \angle 2 T>1$

$$
T H E N \quad \sqrt{1+(\omega T)^{2}}=\omega g
$$

$$
\begin{aligned}
& c^{=}=\sqrt{2} \sqrt{u \quad x} \\
& \alpha=\frac{1}{\sqrt{u}},
\end{aligned}
$$

BUT, IF YOU ABD THE TUIC YOU GET THE CLASSICAL CQEFEICIENT OF ARSORBSION

MEASUREMENT OF EX

$$
\text { In e int }[\operatorname{cag} k \times[\text { paxa] }
$$

$$
4 i \operatorname{tinkx}[\operatorname{tnax}]\}
$$

$$
\begin{aligned}
& \text { THEN }
\end{aligned}
$$

$$
\begin{aligned}
& \prod_{p=O_{1}+P_{2}} \prod_{x=0} \\
& \begin{array}{l}
\theta=Q_{1}+P_{2} \\
\beta^{3}=A^{-2} e^{\alpha(\omega t-\alpha x)}+\theta_{0} e^{x} e^{i(\cos t+k x)}
\end{array} \\
& -\frac{50}{5 x}=\rho \frac{E u}{5 t} \\
& -\alpha p_{1}-i k Q_{1}+\alpha Q_{2}+2 k Q_{2}=\rho \frac{6 匕}{S t}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\frac{\alpha}{i \omega p}+\frac{k}{\alpha p}\right] A_{0} e^{-a x} e^{i(\omega t-k x)}}
\end{aligned}
$$

$$
\begin{aligned}
& U_{x=0}=0 \quad A_{0}=B_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{v i s c o u s 1 r}{\sqrt{1+1}} \\
& E_{x}=L_{2} A \frac{\zeta u}{5 r_{2}} \\
& \text { Hown.jF } \omega T \text { TRd is } \\
& \alpha=\frac{2}{3} \cos ^{2} \\
& \text { GOT MTHAS }
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=\frac{(y-1) I S}{2 \rho c^{2} C_{p}} w^{2} \text { to smabl }
\end{aligned}
$$

$11-15-72$

$$
=2 A_{0} e \quad[\cos h a x \cos k x+i \sin k x \sin \alpha \alpha x]
$$

$$
P_{R E A L}=2\left|A_{0}\right| \sqrt{\cos ^{2} h^{2} \alpha \operatorname{aod}{ }^{2} / k x+\sin A_{0}^{2} \alpha x \sin ^{2} 1+x}
$$

$$
\cos h_{\alpha x}=\frac{e^{\alpha x}+e^{-\alpha x}}{2}=\frac{1+\alpha x-\frac{(\alpha x)^{2}}{2!}+-\frac{12}{2}+1-\alpha x+\left(\frac{a x 12}{2}\right)}{}
$$

$$
\sin R_{\alpha x}=\frac{1+\alpha x+\frac{(\alpha x)^{2}}{2}-\left[1-\alpha x+\frac{\alpha x^{2}}{21}\right]}{2}
$$

647

$$
\operatorname{coth} \alpha x=1+\frac{(\alpha x)^{2}}{2}, \tan R \alpha x=\alpha x-\frac{(\alpha x) 3}{31}
$$

H Now Hef
Lowndey CONLH wo AD

$$
\begin{aligned}
& \gamma=A_{0} e^{-a x} e^{i(\infty+-1+x}+B_{0} e^{a x} e^{i(\operatorname{coth}+(x)}
\end{aligned}
$$

I) ELEMENTS OF ELASTICITY
A) STRESSES AND STRAINS

1) $O N A$ STRING

GENERALLY:

More conveniently

$\left\{\begin{array}{l}\frac{l-l_{0}}{l_{0}} \text { AND } \frac{d-d_{0}}{d_{0}} \text { ARE STRAINS (DIMENSIONLESS) } \\ F / A \quad 1 S \text { THE STRESS (FORCE/AREA) }\end{array}\right.$

$$
\begin{aligned}
& \frac{l-l_{0}}{L_{0}}=\frac{1}{Y} \frac{F}{A} \\
& \frac{d-d_{0}}{d_{0}}=\frac{E}{V} \frac{F}{A}
\end{aligned}
$$

WHERE I' (YOUNG MODULUS) AND O (POISSON'S RATIO) ARE SUFFICIENT TO COMPLETELY DESCRIBE THE ELASTIC BEHAVIOR OE HOMOGENEOUS ISOTROPIC MATERIALS.

$$
\left[\begin{array}{l}
\epsilon_{X X} \\
\epsilon_{Y Y} \\
\epsilon_{Y Z}
\end{array}\right]=\left[\begin{array}{ccc}
1 / Y & \sigma / Y & \sigma / Y \\
-\sigma / Y & 1 / Y & -\sigma / Y \\
-\sigma / Y & \sigma / Y & 1 / Y
\end{array}\right]\left[\begin{array}{l}
S_{X X} \\
S_{Y Y} \\
S_{Y}
\end{array}\right]
$$

STRAINS: RAMEN STRESSES

$$
\begin{array}{ll}
\epsilon_{X X}=\frac{l-l_{0}}{l_{0}} & S_{X X}=F_{X} / A_{X} \\
\epsilon_{Y Y}=\frac{w-w_{0}}{w_{0}} & S_{Y Y}=F_{Y} / A_{Y} \\
\epsilon_{2 z}=\frac{h-h_{0}}{w_{0}} & S_{z z}=F_{Y} / A_{Z}
\end{array}
$$

B) BULK MODULUS

1) $B \Delta-\frac{\Delta P}{\Delta V / V}$

ISOTHERMAL BULK MODULUS COMPUTED@ CONSTANT TEMP ADIABATIC " "
2) RELATIONSHIP TO "Y AND G

$V=V O L U M E ~ O F ~ B L O C K ~(P R E S S U R E ~ P ~$
PRESSURE P
$S_{x x}=S_{y y}=S_{z z}=-P$
PRESSURE P' $=-p$.
$S_{X X}=S_{Y y}=S_{z z}=-p^{\prime}$

CHANGE IN STRAIN:

$$
\epsilon_{X X}=\epsilon_{Y Y}=\epsilon_{Z Z}=\frac{1}{Y}(2 \sigma-1)\left(p-p^{\prime}\right)
$$

CHANGE IN VOLUME: $\epsilon_{i i}=\frac{d_{0}}{d_{0}} \Rightarrow d=d_{0}\left(\epsilon_{i i}+1\right)$

$$
\begin{aligned}
& V^{\prime}=V=l^{\prime} w^{\prime} h^{\prime}-l w h \\
&=\ell\left(\epsilon_{x x}+1\right) w\left(\epsilon_{x x}+1\right) h\left(\epsilon_{x x}+1\right)-\ell w h \\
&=V\left[\left(1+\epsilon_{x x}\right)^{3}-1\right] \\
& \epsilon_{k x} \ll 1 \\
& \Rightarrow V^{\prime}-V \simeq V\left[\left(1+3 \epsilon_{x x}\right)-1\right]
\end{aligned}
$$

on $\frac{V^{\prime}-V}{V}=3 E_{x}=\frac{3}{V^{\prime}}(2 \sigma-1)\left(p-p^{\prime}\right)$
THus: $B=\frac{-\left(P^{\prime}-P\right)}{\left(V^{\prime}-V\right) / V}=\frac{Y}{3(1-2 \sigma)}$
IN THAN $B>0, \quad \sigma<\frac{1}{2}$
c) SHEARING STRESSES AND STRAINS, SHEAR MODULUS

WILL DEFORM THE BLOCK:

2) SHEAR MODULUS RELATIONSHIP TO Y ANO O CONSIDER CUBE OF VOLUME GO. AND YT FORCES

$$
\Delta=\frac{F a_{0}}{A Y}(1+\sigma)
$$

CONSIDER TRIANGULARAPARALGELPIPED:

$$
\Rightarrow \theta=\frac{s}{a_{0} / \sqrt{2}}=\frac{F(1+\sigma) 2}{A Y} \Rightarrow \frac{F / A}{\theta}=\frac{F_{s} / A_{s}}{\theta}=G=\frac{Y}{2(1+\sigma)}
$$

D) STRESS AND STRAIN AT A POINT

$$
s_{x x}=\frac{F_{x}}{h_{0} w_{0}}=\frac{m \delta}{h_{0} w_{0}}-\rho g x
$$

$$
=\rho g\left(l_{0}-x\right)
$$

$$
\epsilon_{x x} \stackrel{\Delta}{=} \lim _{\Delta x \rightarrow 0} \frac{\Delta x_{5}-\Delta x}{\Delta x}
$$

$$
\Delta x_{s}-\Delta x=\xi(x+\Delta x)-\varepsilon(x)
$$

$$
\Rightarrow \varepsilon_{x x}=\lim _{\Delta x \rightarrow 0} \frac{\varepsilon(x+\Delta x)-\xi(x)}{\Delta x}=\frac{d \xi}{d x}
$$

Now $\epsilon_{x x}=\frac{1}{Y} S_{x x}=\frac{1}{Y} \rho g\left(l_{0}-x\right)=\frac{d \varepsilon_{2}}{d x}$

$$
\Rightarrow E(x)=\frac{1}{Y} p_{8}\left[b_{0} x-\frac{x^{2}}{2}\right]
$$

E) THIN BEAM

MEGENDING MOMENT (TORQUE IN Z DIRECTION
$1 w / 2$

$$
\left\{\begin{array}{l}
F_{X}=0 \\
F_{Y}=w / 2 \\
M=\frac{w x}{2}
\end{array}\right.
$$

THUS:

$$
\begin{aligned}
& S_{X x}=\frac{F_{x}}{W h}=0 \\
& S_{Y Y}=\frac{F_{Y}}{W h}=-\frac{W}{2 W h}
\end{aligned}
$$

CONSIDER $\triangle X$ OF THE ROD, DISTANCE:
(DOTTED LINE EQUAL IN LENGTH TO UNOISTORTEDRROD)

$$
R=\text { RADIUS OF CURVATURE }=\frac{\left.\left[1+\frac{d y}{d x}\right)^{2}\right]^{3}}{d^{2} Y / d x^{2}}
$$

$$
\simeq\left[\frac{d^{2} y}{d x^{2}}\right]^{-1} \operatorname{PoR} \frac{d Y}{d x^{2}} \ll 1
$$

CHANGE IN LENGTH OF SHADED STRIP IS:

$$
(r+R) \Delta \phi-R \Delta \phi=r \Delta \phi
$$

STRAIN ON STRIP:

$$
\frac{(r+R) \Delta \phi-R \Delta \phi}{R \Delta \phi}=\frac{r}{R}
$$

STRESS AT STRIP:

$$
\begin{aligned}
& E S S \text { AT STRIP: Yr/R=} \\
& S_{x x}=Y E_{x x}=\frac{d F_{x}}{W d r} \\
& \Rightarrow d F_{x}=Y Y_{R}^{W} d r
\end{aligned}
$$

TORQUE DUE TO $d F_{X}$ AND $d F_{Y}: d \tau_{z}=2 F_{2} d F_{x}=2 r^{2} \frac{T}{R} d r$
or $\quad \frac{d^{2} y}{d x^{2}}=\frac{12}{Y w h^{3}} M=\frac{12}{I w h^{3}} \frac{W}{2} x$

$$
\Rightarrow Y=\frac{W}{Y w h^{3}}\left(x^{3}-\frac{3}{4} L^{2} x\right)
$$

F) ROD UNDER TORSION

TWIST AND SHIFT:

$$
\begin{aligned}
& d \tau=r d F=r G \theta d A=r\left[G r \frac{d \psi}{d r}\right] d A
\end{aligned}
$$

$$
\begin{aligned}
& \text { atéstista. } \\
& \tau=\int_{0}^{a} r\left[\operatorname{cor} \frac{d \psi}{\delta x}\right] 2 \pi r d r=\frac{G-a^{4} \pi}{2} \frac{d \psi}{d x}=\tau_{E X T} \\
& \Rightarrow \psi=\frac{\Phi}{L} x \\
& \Gamma_{E X T}=\frac{G a^{4} T}{2} \frac{\Phi}{L}
\end{aligned}
$$

c) GENERALIEED CONCEPT OF STRAIN

$$
\begin{aligned}
& d \xi=\frac{\delta \xi}{\delta x} d x+\frac{\delta \xi}{\delta Y} d Y+\frac{\delta \xi}{\delta Z} d Z \\
& d n=\frac{8 n}{\delta x} d x+\frac{d n}{d Y} d Y+\frac{\delta n}{\delta z} d z \\
& d \rho=\frac{\delta \rho}{\delta x} d x+\frac{\delta \varphi}{\delta y} d y+\frac{\delta \xi}{\delta Z} d z \\
& \epsilon_{X X}=\frac{\delta \varepsilon}{\delta x} \quad \epsilon_{X Y}=\epsilon_{Y X}=\frac{1}{2}\left(\frac{\delta E}{\delta Y}+\frac{\delta \eta}{\delta x}\right)= \\
& \epsilon_{Y Y}=\frac{\delta \pi}{\delta Y} \\
& \epsilon_{X z}=\epsilon_{2 x}=\frac{1}{2}\left(\frac{\varepsilon_{\delta z}}{\delta z}+\frac{\delta_{g}}{\delta x}\right) \\
& \epsilon_{z=}=\frac{\delta \varphi}{\delta z} \quad \epsilon_{Y Z}=\epsilon_{z Y}=\frac{1}{2}\left(\frac{\delta h}{\delta z}+\frac{\partial \varphi}{\delta r}\right)
\end{aligned}
$$

$\therefore \quad *$
II) HARMONIC MOTION
A) THE SIMPLE HARMONIC OSCILLATOR

$$
\begin{gathered}
-k x=m \ddot{x} \\
\quad \omega_{\theta}=\sqrt{k / M} \\
\Rightarrow \ddot{x}+\omega_{0}^{2} x=0_{Q}
\end{gathered}
$$

ASSUME: $x(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$
(plug and chic)

$$
x(t)=C \cos \omega_{0} t+D \sin \omega_{0} t
$$

B) COMPLEX FORM OF SOLUTION

$$
x(t)=A e^{i \sin _{0} t}
$$

C) VELOCITY, ACCELERATION. AND PHASE

$$
\begin{aligned}
& x(t)=A e^{i \omega_{0} t} \\
& \dot{x}(t)=i \omega A e^{i \omega_{0} t} \\
& \ddot{x}(t)=-\omega^{2} A e^{i \omega_{0} t}
\end{aligned}
$$

D) ENERGY OF SIMPLE HARMONIC OSCILLATOR

$$
E=\frac{1}{2} m x^{2}+\frac{1}{2} k x^{2}=\frac{1}{2} m A^{2} \omega_{0}^{2}
$$

E) DAMPED HARMONIC MOTION

$$
\begin{aligned}
& m \ddot{x}+R \dot{x}+k x=0 \\
& \ddot{x}+2 \alpha \dot{x}+\omega_{0}^{2} x=0 \quad \Rightarrow \omega_{0}=\sqrt{\frac{R}{m}} ; \alpha=R / 2 m \\
& \Rightarrow x=e^{-\alpha t}\left[A \cos \left(\omega_{0} t+\phi\right)\right] \Rightarrow \omega_{D}=\sqrt{\omega_{0}^{2}-\alpha^{2}}
\end{aligned}
$$

F) DRIVEN HARMONIC OSCILLATOR

$$
m \ddot{x}+R \dot{x}+k x=F_{0} \cos \omega t
$$

particular solution

$$
\begin{array}{ll}
x=\frac{\text { Fol }(\sin \omega t-\theta)}{\left|Z_{m}\right|} ; & Z_{m}=R^{a}+i(\omega m-1 / \omega) \\
N E R A L \text { SOLUTION: } & \theta=\tan ^{-1}\left(\frac{\omega m-R / \omega}{R}\right)
\end{array}
$$

GENERA R SOLUTION:

$$
x=A e^{-\alpha t} \cos \left(\omega_{D} t+\phi\right)+\frac{\left(F_{0} / m\right)(\sin (\omega t-\phi))}{\sqrt{R^{2}+\left(\omega m-\frac{1}{\omega}\right)^{2}}}
$$

$x(t)$ lags $F \cos (\omega t)$ Br θ
G) MECHANICAL RESONANCE

$$
P_{i n}=\frac{F_{0}^{2} R}{2\left[R^{2}+\left(\omega M-\frac{k}{4}\right)^{2}\right]}
$$

$$
\begin{aligned}
& \omega_{n}=\sqrt{R M} \\
& Q=\frac{\omega_{r}}{\omega_{2}-\omega_{1}}=\frac{1}{R} \sqrt{K M} \\
& \omega_{2}=\frac{R}{2 m}+\sqrt{(R / 2 m)^{2}+1 / M} \\
& \omega_{1}=\frac{R}{2 m}-\sqrt{\left(R / 2 m^{2}\right)+1 M}
\end{aligned}
$$

H) COMPLEX FORM OF SOLUTION OF

DRIVEN OSCILLATOR

$$
\begin{aligned}
& m \ddot{x}+R \dot{x}+k x=F_{0} \sin \cos \\
& \quad \Rightarrow x(t)=\frac{-i F_{0} / \omega}{\sum m} e^{i \omega t}
\end{aligned}
$$

$x(t)$ LAGS F_{0} inner $\tan ^{-1}\left(\frac{\operatorname{com}-\frac{1}{4}}{R}\right)$
I) MECHANICAL IMPEDANCE

$$
Z m=R+i\left(\cos -\frac{k}{k}\right)
$$

J) THE LOUDSPEAKER AS A DRIVEN DAMPED OSCILLATOR

$$
\begin{aligned}
& m \dot{Y}+R \dot{y}+k y=B I I \cdot \cot \omega t \\
\Rightarrow & \dot{y}=\frac{B C I_{0} e \operatorname{int}}{Z_{m}}
\end{aligned}
$$

ROD WAVES
LONGITUDINAL WAVES ON RODS
A) DERIVATION

$$
\begin{aligned}
& \epsilon_{x x}=\frac{8 \varepsilon_{x}}{\delta x}=\frac{1}{\gamma} S_{x x}=\frac{F_{x}}{A x} \\
& \Rightarrow F_{x}=\Upsilon A \frac{\delta g_{x}}{\delta x}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{d F_{x}}{\delta x}=p A \frac{\delta^{2} \varepsilon^{2}}{\delta t^{2}} \\
& \frac{b F_{x}}{\delta x}=x A \frac{\delta^{2}}{\delta x^{2}}=\beta A \frac{\delta^{2} \xi^{2}}{\delta t^{2}} \\
& \therefore c^{2} \frac{\delta^{2} E}{\delta x^{2}}=\frac{\delta^{2} \varepsilon}{\delta t^{2}} \geqslant c=\sqrt{Y_{p}}
\end{aligned}
$$

B) SOLUTION

$$
\begin{aligned}
& E(x, t)=X(x) H(t) \\
& \Rightarrow c^{2} \frac{d^{2} X(x)}{d x^{2}} H(t)=X(x) \frac{d^{2} H(t)}{d t^{2}} \\
& \frac{c^{2} d^{2} x(x)}{x} \frac{1}{H x^{2}} \frac{d^{2} H(t)}{d t^{2}}=-\omega^{2} \\
& \frac{d^{2} H}{d t^{2}}=H c^{2} \Rightarrow H=a_{1} \cos \omega t+b, \sin \omega t \\
& \frac{d^{2} x}{d x^{2}}=\left(\frac{\cos }{}\left(\frac{4}{c}\right)^{2} x=x=a_{2} \cos \left(\frac{4}{c}\right) x+b_{2} \sin \left(\frac{w}{c}\right) x\right. \\
& \varepsilon(x, t)=\left[\cos \left(\frac{\omega}{c}\right) x+c_{2} \sin \left(\frac{\omega}{c}\right) x\right] \cos \omega t \\
& +\left[c_{3} \cos \left(\frac{c}{c}\right) x+c_{4} \sin \left(\frac{c}{c}\right) x\right] \sin \omega t
\end{aligned}
$$

C) BOUNDRY CONDITIONS

- FREE END

$$
F_{x}(i, t)=\left.0 \Rightarrow \frac{\delta E}{8 x}\right|_{D, t}=0
$$

2) FixED $A D$

$$
\varepsilon(0, t)=0
$$

ROD WAVES
II) TRANSVERSE WAUES IN RODS
(A) DERIVATION

$$
F_{Y}(x+\Delta x)-F_{y}(x)=\left.\rho w h \Delta x \frac{\delta^{2} y}{\delta t^{2}}\right|_{x+} a x / 2
$$

$\Rightarrow \frac{\delta F x}{\delta x}=\rho w h a t \frac{\delta^{2} y}{\delta t^{2}}$

PREVIDUSLY DERUUED:

$$
\begin{aligned}
& m=\frac{T w h}{12} \frac{\delta^{2} y}{8 x^{2}} ; F_{y}=\frac{8 m}{8 x} \\
& \Rightarrow \frac{d F_{x}}{8 x}=\frac{\delta^{2} m}{8 x^{2}}=\frac{I h^{3}}{12} \frac{d^{4 y}}{d x^{4}}
\end{aligned}
$$

combininco

$$
\begin{aligned}
& \frac{d F_{x}}{d x}=\frac{-I W h^{3}}{12} \frac{d y}{d x^{4}}=\rho w h \frac{b^{2} y}{\frac{t^{2}}{2}} \\
& -(c I)^{2} \frac{5 h y}{6 x^{4}}=\frac{\delta^{2} x}{s^{2}} \quad \delta=\sqrt{2 / p} ; I=\frac{h}{\sqrt{12}}
\end{aligned}
$$

(B) SOLUTION

$$
\begin{aligned}
& Y(x, t)=X(x) H(t) \\
& (C I)^{2} \frac{d+x}{d x^{4}} H=I \frac{d^{2} H}{d t^{2}} \\
& -()^{2} \frac{1}{x^{2}} \cdot \frac{d^{4} x}{x^{4}}=\frac{1}{H} \frac{d^{8} H}{d t^{2}}=-w^{2} \\
& \frac{d^{2} H}{d t^{2}}=-\omega^{2} H \Rightarrow H(t)=a_{0} \cos \omega t t^{2}+a_{2} \sin \omega t \\
& \frac{d^{4} x}{d x^{2}}=-\frac{\omega^{2}}{(c I)^{2} X}=-\alpha^{2} x \\
& \Rightarrow X(x)=b_{1} \cos \alpha x+b_{2} \sin \alpha x+b_{3} \cosh \alpha x+b_{4} \sinh \alpha x \\
& \Rightarrow I(x, t)=\left[A_{1} \cos \alpha x+A_{2} \sin \alpha x+A_{3} \cos \alpha \alpha x+A_{1} \sinh \alpha x\right] \\
& +\left[B_{1} \cos \alpha x+B_{2} \sin \alpha x+B_{3} \cos \alpha \alpha x+B_{1} \operatorname{rin} \alpha x\right] \\
& \text { Anmust }
\end{aligned}
$$

ROD WAVES
(C)BOUNDRY GONDITIONS
(DClamped eno

(a)FREE END

$$
\begin{aligned}
& m=\left.0 \Rightarrow \frac{\delta^{2} y}{\delta x^{2}}\right|_{0, t}=0 \\
& F_{y}=\left.0 \Rightarrow \frac{\delta^{3} y}{\delta x^{3}}\right|_{i, t}=0
\end{aligned}
$$

ROD WAVES
II) TORSIONAL WAVES IN RODS

(DERIVATION

$$
\frac{d F}{d A}=\cos \Rightarrow d F=\operatorname{cod} A=\operatorname{cr} \frac{64}{\delta x} d A
$$

THE TORQUE ABOUT A SHELL:

$$
\begin{aligned}
& \Delta y=G r \frac{5 \psi}{\delta x}(2 \pi r d r) \\
& y=\int_{0}^{a} \operatorname{cr} r\left(\frac{5 \psi}{5 x} 2 \pi r\right) d r \\
& =G \frac{5 \psi}{5 x} \frac{\pi a^{4}}{2}
\end{aligned}
$$

$$
\Rightarrow p=\int_{0}^{0} \operatorname{cr}\left(\frac{5 \psi}{x} 2 \pi r\right) d r
$$

ROD WAVES
$\left\{\begin{array}{l}-1 \times(x+\Delta x) \\ -2 x \\ x(x)\end{array}\right.$

$$
\begin{aligned}
Y(x+1 x)-Y(x) & =\frac{1}{2} T \alpha \\
& =\left[\frac{1}{2} A A x+0\right] \frac{1}{4}+\frac{1}{2}
\end{aligned}
$$

$$
\Rightarrow \frac{5 y}{5 x}=\frac{\pi a^{4} a}{2} \frac{5^{2 y}}{t^{2}}
$$

(b)SOLUTION
SAME AS FOR LONGITUDINAL WAVES, REPACNE 4 sonE
(C) BOUNDRY CONDITIONS

1) FREE END:

$$
\eta=0-\left.\frac{6 y}{8 x}\right|_{0 . t}=0
$$

2)CLAMPEO END:

$$
\psi(0, t)=0
$$

$$
\begin{aligned}
& \frac{64}{6 x} \cdot \frac{\pi a p}{2} \frac{c^{2} y}{8 t^{2}}=6 \frac{s^{4} 4}{6 x^{2}} \frac{\pi a}{2} \\
& \Rightarrow c^{4} \frac{s^{2} y}{\frac{5}{2}}=\frac{s^{2} u}{6 t^{2}}=c=\sqrt{\rho^{2}}
\end{aligned}
$$

MEMBRANE WAVES
I) RECTANGULAR PERIMETER

$$
\begin{aligned}
& T=\frac{E|F|}{\text { PERIMETER }} \\
& \text { HAL } \\
& \text { RA 6 }
\end{aligned}
$$

(4) derivation

z
TAX! TAX

$$
\Sigma F_{Y}=\left.T \Delta x \frac{\delta \partial}{\delta Y}\right|_{Y+\Delta Y}-\left.T \Delta x \frac{\delta \Sigma}{\delta Y}\right|_{Y}
$$

$$
\begin{aligned}
& \Rightarrow T\left[\frac{b^{2} z}{\delta y^{2}}+\frac{\delta^{2} z}{\delta x^{2}}\right]=\sigma \frac{b^{2} z}{\delta t^{2}} \\
& \therefore c^{2}\left[\frac{b^{2} z}{\delta x^{2}}+\frac{b^{2} z}{b y^{2}}\right]=\frac{\delta^{2} z}{\delta t^{2}} \quad c=\sqrt{7}
\end{aligned}
$$

(1) SObution

$$
\begin{aligned}
& z(x, y, t)=Z(x) I(y) H(t) \\
& \Rightarrow c^{2}\left[Z H \frac{d^{2} X}{d x^{2}}+X H \frac{d^{2} x^{2}}{d Y^{2}}\right]=X X \frac{d^{3} H}{d t^{2}} \\
& c^{2}\left[\frac{1}{X} \frac{d^{2} x}{d x^{2}}+\frac{1}{L} \frac{d^{2} I^{2}}{d y^{2}}\right]=\frac{1}{H} \frac{d^{2} H}{d t^{2}}=-u^{2} \\
& \frac{d^{\prime} H}{d t^{2}}=-\omega^{2} H \Rightarrow d, \cos \omega t+d^{2} \text { inivut } \\
& \frac{1}{\Sigma} \frac{d^{2} x}{d x^{2}}+\frac{1}{I} \frac{d^{2} I^{2}}{d Y^{2}}=-\left(\frac{w}{c}\right)^{2} \\
& \frac{1}{x} \frac{d^{2} x}{d x^{2}}=\left(\frac{u}{e}\right)^{2}-\frac{1}{x} \frac{d^{2} q}{d y^{2}}=-\alpha^{2} \\
& \frac{d^{2} x}{d x^{2}}=-\alpha^{2} x+X=d_{3} \cos \alpha x+d_{4} \sin \alpha x \\
& \frac{d^{2} Z}{d y^{2}}-\left[\left(\frac{u}{C}\right)^{2}-\alpha^{2}\right] \text { W } \\
& I=d_{s} \cos \left[\sqrt{\left(\frac{\pi}{\varepsilon}\right)^{2}-\alpha^{2}} y\right]+d_{6} \sin \left[\sqrt{\left(\frac{y}{2}\right)^{2} \alpha^{2}} y\right] \\
& \therefore Z(x, y, t)=H(t) X(x) I(y) \text { FROM ABOVE }
\end{aligned}
$$

(C)APPLICATION OF BOUNDRY CONDITIONS

$$
\begin{aligned}
& z(0, v, t)=0 \Rightarrow d,=0 \\
& z(x, 0, t)=0 \Rightarrow d \xi=0 \\
& z(a, v, t)=0 \\
& z(x, b, t)=0
\end{aligned}
$$

$z(x, y, t): \sin \alpha x \sin \sqrt{\left(\frac{4}{c}\right)^{2} \alpha^{2}}$ y $[A \cos \omega t \mid B$ incut]
$z\left(a_{0}, y, t\right)=0 \Rightarrow \sin \alpha a_{0}=0 \Rightarrow \alpha a_{0}=m \pi$ $\therefore m=2,3, \ldots$

$$
\begin{aligned}
& \Rightarrow a=\frac{m \pi}{a_{0}} \\
\approx\left(x, b_{0}, t\right)=0 & \Rightarrow \dot{m} \sqrt{\left(\frac{4}{c}\right)^{2} \cdot\left(\frac{m \pi}{a_{0}}\right)^{2} b}=0 \\
\Rightarrow & \sqrt{\left(\frac{w}{c}\right)^{2} \cdot\left(\frac{m \pi}{a_{0}}\right)^{2}}=\frac{n \pi}{b_{0}} \\
& \omega_{m n} c \sqrt{\left(\frac{n \pi}{b_{0}}\right)^{2}+\left(\frac{m \pi}{a_{0}}\right)^{2}}=\operatorname{cn} \sqrt{\left(\frac{n}{b_{0}}\right)^{2}\left(\frac{m}{a}\right)}
\end{aligned}
$$

$\therefore z_{m n}(x, y, t)=\operatorname{An} \frac{m \pi}{a_{0}} x \sin \frac{n \pi}{b_{0}} y\left[A_{m n} \cos \cos \sqrt{\left(\frac{a}{b}\right)^{3}+\left(\frac{m}{a}\right)^{2}} t\right.$

Mamara
(0) Fourier Expansion

$$
Z(x, y, t)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} z_{m n}(x, y, t)
$$

GIVEN: $Z(X, Y, 0)$ AND $V(x, y, 0)=\left.\frac{d z}{d t}\right|_{X, Y, 0}$
$\Rightarrow Z_{0}(x, y)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sin \frac{m \pi}{a} x \sin \frac{n \pi}{b} y A_{m n}$

$$
\begin{aligned}
& A_{m n}=\frac{4}{a b} \int_{0}^{b} \int_{0}^{a} z_{0}(x, y) \sin \frac{m \pi x}{a} \sin \frac{n \pi r}{b} d x d y \\
& B_{m n}{ }^{?}-\frac{4 c \pi}{a b} \int_{0}^{b} \int_{0}^{a} V_{0}(x, y) \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} d x d y
\end{aligned}
$$

II) CIRCULAR PERIMETER

$\Sigma F=T\left[\Delta \phi\left\{\left.(r+\Delta r) \frac{\partial z}{\delta r}\right|_{r+a r}-\left.r \frac{\delta t}{\delta r}\right|_{r}\right\}\right.$

$$
\left.+\frac{\Delta r}{r}\left\{\left.\frac{\delta z}{\delta \phi}\right|_{\phi+\Delta t}-\left.\frac{\delta z}{\delta \phi}\right|_{\phi}\right\}\right]=\left.o \Delta r r \Delta \phi \frac{b^{2} z}{\delta t}\right|_{n t t}
$$

$$
\Rightarrow T\left[\frac{r^{2}}{\delta r^{2}}+\frac{1}{r} \frac{b \mathrm{t}}{\square}\right]+\frac{T}{r^{2}} \frac{\delta^{2} \eta^{2}}{\delta \phi^{2}}=\sigma \frac{b^{2} z^{2}}{\delta t^{2}}
$$

$$
\therefore c^{2}\left[\frac{b^{2} z}{\delta r^{2}}+\frac{1}{r} \frac{\delta n}{r}+\frac{1}{r^{2}} \frac{\varepsilon^{2} z}{\delta \phi^{2}}\right]=\frac{\frac{b}{2}^{2} z}{\delta c^{2}}=c=\sqrt{7 /}
$$

(B) SOLUTION

$$
\begin{aligned}
& z(r \cdot \phi, t)=R(r) \Phi(\phi) H(t) \\
& c^{2}\left[\Phi H \frac{d r^{2}}{d r^{2}}+\frac{1}{r} \phi H \frac{d R}{d r}+\frac{1}{r 2} R H \frac{d^{2} \phi}{d \phi}\right]: R \phi \frac{d^{2} H}{t^{2}} \\
& c^{2}\left[\frac{1}{R} \frac{d^{3} R}{d r^{2}}+\frac{1}{R R} \frac{d R}{d r}+\frac{1}{r^{2} \phi} \frac{d^{2} \phi}{d \phi}\right]=\frac{1}{H} \frac{d^{2} H}{d t^{2}}=-\omega^{2} \\
& \frac{d^{2} H}{d t^{2}}=-\omega^{3} H-H(t)=d_{1} \cos \omega t+d_{2} \operatorname{cin} \omega t \\
& \frac{1}{R} \frac{d^{2} R}{d r^{2}}+\frac{1}{r R} \frac{d R}{d r}+\frac{1}{r^{2} \phi} \frac{d^{2} d}{d \phi^{2}}=\left(\frac{m}{C}\right)^{2} \\
& r^{2}\left[\frac{1}{R} \frac{d^{2} R}{d r^{2}}+\frac{1}{r R} \frac{d R}{d r}+\left(\frac{w}{c}\right)^{2}\right]=\frac{-1}{\Phi} \frac{d^{2} \phi}{d P^{2}}=m^{2} \\
& \begin{array}{l}
\frac{d^{2} \phi}{d \phi^{2}}=-m^{2} \Phi \Rightarrow \Phi(\phi)=d_{3} \cot m \phi+d_{4} \sin m \phi \\
(\text { NOTR, } \Phi(\phi)=\Phi(\phi+2 n T) \Rightarrow m \in \text { NTEGER) }
\end{array} \\
& \frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d P}{d r}+\left(k^{2}-\left(\frac{m}{r}\right)^{2}\right) R=0 \quad=k=\sqrt{\frac{4}{c}} \\
& \text { LET. } R=\sum_{n=\infty}^{\infty} a_{n} r^{n} \\
& -R\left(\frac{m}{r}\right)^{2}=-\left(\frac{m}{r}\right)^{2} a_{0}-\frac{m^{2}}{r} a_{1}+m^{2} a_{2}-m+a_{3}+m^{2} r^{2} a_{4}+\ldots \\
& \frac{1}{r} \frac{d R}{d r}=\quad \quad \frac{a_{3}}{r}+2 a_{2}+3 r a_{3}+4 r^{2} a_{4}+\ldots . \\
& \frac{d^{2} p}{d r}=\quad 2 a_{2}+6 r a_{3}+12 r r_{4} a_{4}+\ldots \\
& a_{1}=0 \Rightarrow a_{3 p 1}=0 \\
& a_{2}=-\frac{k^{2}}{4} a_{0} \\
& a_{4}=\frac{-k}{16} a_{2}=\frac{x^{4} a_{0}}{(4)(16)} \\
& \Rightarrow R(r)=a \cdot\left[1-\frac{k r^{2}}{4}+\frac{k r^{4}}{(4)(16}-. \cdot\right]
\end{aligned}
$$

(C) BOUNDRY CONDITIONS

$$
\begin{aligned}
& z(r, \phi, t)=J_{m}\left(\frac{u_{1}}{c} p\right)\left[d_{3} \cos m \phi+d_{4} \sin m \phi\right] \\
& z(a, \phi, t)=0 \\
& \Rightarrow J_{m}\left(\frac{u}{c} a\right)=0
\end{aligned}
$$

FOR m:o

$$
\begin{aligned}
& \frac{\omega}{c} a=2.405,5.52 .8 .65 \\
\Rightarrow & \mu_{1}, \frac{2.405 c}{a}, \frac{5.52 c}{a}, \frac{8.65 c}{a}
\end{aligned}
$$

for $m=1$

$$
\begin{aligned}
\frac{\mu}{c} a & =3.83,7.01 \\
\Rightarrow & \mu_{1 n}=\frac{3.85}{a}, \frac{7.01 c}{a}, \ldots
\end{aligned}
$$

FOR $m=2$

$$
\begin{aligned}
& \frac{4}{6} a=5.16,8.41, \ldots \\
& \Rightarrow \omega_{\min }=\frac{5.15 c}{9}, \frac{-.41 c}{9} \ldots \\
& z_{01} C_{0 .}\left(\frac{2.405 r}{a}\right) \cos \left(\frac{2.405 c_{t} t+\Omega_{01}}{a}\right) \\
& z_{02}=C_{02} J_{0}\left(\frac{5 \cdot 52 r}{a}\right) \cos \left(5 \cdot 52 c t+\Omega_{03}\right) \\
& z_{11}=C_{11} d_{1}\left(\frac{3.83 r}{a}\right) \cos \left(\phi+\phi_{11}\right) \cos \left(\frac{3.53}{9} c t+\Omega_{11}\right) \\
& \text { zin }_{11} \operatorname{C}_{12} d_{1}\left(\frac{7.01 r}{a}\right) \cos \left(\phi+\phi_{12}\right) \cos \left(\frac{\left.7.01-c t+\Omega_{12}\right)}{a}\right. \\
& z_{21}=c_{21} \nu_{2}\left(\frac{5.15 r}{a}\right) \cos \left(2 \phi+\phi_{21}\right) \cos \left(\frac{5.15}{a} c t+\Omega_{21}\right)
\end{aligned}
$$

1) KETTLE ORUM
2) Derivation

ASSUME PV' CONSTANT

$$
\begin{aligned}
& \Delta P=d P=V_{0} V_{0} d V \text { (pREvioushy osRIUED) }
\end{aligned}
$$

2) SOLUTION

$$
\begin{aligned}
& z(r, \phi, t)=\psi(r, \phi) H(t) \\
& V=\int_{0}^{2 \pi} \int_{0}^{0} \psi(r, \phi) H(t) r d r d \phi=H I_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow H=d_{1,01} \omega t+d_{2} \text { vimut } \\
& \frac{\delta}{5} \frac{\delta^{2} \psi}{6 r^{2}}+\frac{1}{r} \frac{\delta \psi}{\delta r}+\frac{1}{r^{2}} \frac{\delta^{2} \psi}{6 \phi^{2}}+k^{3} \psi=\frac{\gamma P_{0} I c_{2}}{V_{0} c^{2}} \\
& \psi(r, \phi)=R(r)+\phi(\phi) \\
& \text { 5. } \quad \frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}+\frac{1}{r^{2}} \frac{d^{2} \Phi}{\partial \phi^{2}}+K^{2}=0
\end{aligned}
$$


```
WMVES IN FIUDDS
```


THUE THE STRESS STRAN RELATHASHIR FOE A FLUHBE

$$
\begin{align*}
\Delta p= & -B[S E+E M \tag{A}\\
& =-P\left[C_{X K}+C_{Y Y}+C_{Z R}\right]
\end{align*}
$$

TTHE WAVE EGUATION:

ON THE FRONT AND BACK FACIS, FROM NEWTONE

$$
\text { SECOND } 1 . A W^{\circ}
$$

COMPINING:

RECAL THE STRESS STRAIN RELATIONSHM (A)

$$
\frac{p}{p}=c^{2}
$$

$$
\begin{aligned}
& O=-B\left[\frac{\delta \Sigma}{X} r \frac{E x}{S Y}+\frac{E}{\delta}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{B}{R}\left[S P=\& S^{2}+\frac{p}{5}\right]
\end{aligned}
$$

SOLUTION OF THE WAVE EQUATION:
A) $P=A e^{i(\omega t-1 \infty)} \Rightarrow A$ PLANE WAVE

$$
=c t-X
$$

$$
\frac{t^{2} Y}{\gamma^{2}}=1^{2} \frac{y}{y}
$$

$\frac{1}{2} d Z^{2}=-\left(k^{2}-x^{2}+Q^{2}=x^{2}\right.$

$$
\frac{d z z}{d z}=-d a z
$$

$[a b(a d)+b+3+\operatorname{dat}]$
[ayctatit + ta dian ty]

$$
\begin{aligned}
& \operatorname{cog}_{0}(0 \times+1) \tan (\cot +\sqrt{2})
\end{aligned}
$$

$$
\begin{aligned}
& \text { B) HARMONIC SOLUTION }
\end{aligned}
$$

$$
\begin{aligned}
& \text { LET } 0_{1}(x, y, z, t)=X(x) Y(y) \geq(z) 11(t)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d^{2 H}}{d t^{2}}=-2 d
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d^{2} x^{2}}{1} x^{2}=x
\end{aligned}
$$

$$
\begin{aligned}
& \text { FOR AN IDEAL GAS: }
\end{aligned}
$$

$$
\begin{aligned}
& C \pm \sqrt{\gamma R T / M}=\operatorname{consT} \sqrt{T}
\end{aligned}
$$

ROUNDKY CONDITIONS:

REDUENE THE EGUNTION:
$P(x, y, z, t)=\left(a_{1} a_{2} a_{3}\right) \cos \alpha x \operatorname{cas} B Y \cos \gamma z$
$\left[a_{4} \cos \omega t+b_{4} \operatorname{din} \omega t\right]$

$$
\begin{aligned}
& \text { N○W } \operatorname{lem}_{2}^{2}+\cos ^{2}+d
\end{aligned}
$$

$$
\begin{aligned}
& \text { [} A_{n, n_{y} n_{x}} \cos \omega_{n_{n} n_{n} n_{2}} t+B_{\left.n_{x} n_{y} n_{8} \sin \omega_{a_{m}} n_{n} t\right]} t \text {] }
\end{aligned}
$$

$$
P(x, y, z, t)=A \operatorname{cod}(x, 1 t,) \cos (\beta y+\Omega,)
$$ $\cos (d z+1,4) \cos \left(\operatorname{lt}_{4}+4\right)$

$$
P_{0,4, k, c}=P_{1, R, W, z}=0
$$

(A) $\theta_{x, 0, z, t}=\rho_{x, 1 y, z, t}=\infty n_{y}$ r

$P\left(x_{0}, y_{0}, z, t\right)=A^{\prime} \cos (d z+b) a d z(\omega t+\Omega)$

$$
=A[a d](d z+a t+\Gamma 2)+\cot (d z+b-\omega t-\Omega)]
$$

$$
=\frac{A}{2}\left[\cos \phi\left(z+\frac{b}{d} t+\frac{s+b}{\sigma}\right)+\cos d\left(z-\frac{w}{d} t+\frac{4-\pi}{\sigma}\right)\right]
$$

NOTE $C^{\prime}=\frac{4}{8}$

$$
=\frac{\sqrt{\left(\frac{w}{c}\right)^{2}}\left(\frac{n+\frac{m}{L x}}{2} \cdot\left(\frac{m \mu}{L \varphi}\right)^{2}\right.}{}
$$

IA SOLUTION FOR (A) WHEN

$$
\left(\frac{w}{c}\right)^{2}>\left(\frac{n x}{\pi}\right)^{2}+\left(\frac{n y \pi}{4}\right)^{2}
$$

THE (OO) MODE MAY BE INSURED IF $\left(\frac{w}{c}\right)^{2}<\left(\frac{\pi}{4}\right)^{2}+\left(\frac{\pi}{4}\right)^{2}$

PLANE WAVES

$$
c^{2}\left[\frac{s^{2}}{S x^{2}}+g^{2} y^{2}+S^{2} Z^{2}\right]=\frac{S^{2} 0}{S t}
$$

YILLVE A PLANE WAVE SOLUTIEN.

$$
P(X, Y)=A Q^{i(\omega t-k x)}+B Q^{i(\omega t+k x)} \Rightarrow k=\frac{u}{C}
$$

NEWTON'S SECOND LAW:

$$
\begin{aligned}
& -\frac{S Q}{5 x}=0 \frac{b^{2} E}{S^{2}} \\
& \Rightarrow U=\frac{5 S^{2}}{5 t}=\frac{A}{p<} e^{(\alpha(\omega t-k x)}-\frac{1}{p C}(i(\omega t+k x)
\end{aligned}
$$

DEFNE THE SPEGUFE ACCUSIE MMPENANEE

$$
\triangleq P / 0
$$

$$
\begin{aligned}
& =p c \frac{A C^{1 M}+B e^{-1 K} x}{A} \\
& \text { WHERE OCE CHARACTENIETIC IMHLDANEE }
\end{aligned}
$$

GONSIDR TWO MEDIA

$$
\begin{aligned}
& p_{1} c_{1} \rho_{2} c_{2} \\
& \theta_{i}=A_{1} e^{i(\cos -k x)} \\
& P_{2}=A_{2} e^{i\left(\omega t-k_{2} x\right)} \\
& \begin{array}{c}
Q_{n}=B_{1} e^{i(\omega+t} t_{x} \\
k_{1}=\frac{\omega_{1}}{e_{1}}
\end{array} \\
& 12 e^{2} \frac{e_{0}}{e_{0}} \\
& x=0
\end{aligned}
$$

BOUNDRY CONDITIONS:

$$
\begin{aligned}
& \left.\left.O_{L}\right|_{x=0} 0_{R}\right|_{x=0} \\
& U_{L}\left|x=0=U_{R}\right| x=0 \\
& \begin{array}{r}
\text { THUS } \frac{A_{1}+B_{1}=}{A_{1}-P_{1} C_{1}} P_{1} C_{1} \\
\quad \text { on } \frac{P_{1} C_{2}}{A_{1}}=\frac{P_{1} C_{1}}{\frac{P_{2} C_{1}}{P_{1}}+1}
\end{array} \\
& \because A_{1}+H_{1}=A_{2} \\
& \Rightarrow \frac{A_{1}-B_{1}}{A_{1}}=\frac{A_{2}}{A_{2} C_{2}} . \\
& \text { Ar - } \quad \text { pac } \\
& \text { AND } \\
& A_{1} p_{1} c_{1}+p_{2} C_{2} \\
& \text { THEN: } \\
& P_{i}=A_{1} e^{i(\cos t-k x)} \\
& P_{r}=A_{1} \frac{P_{2} c_{2}-1}{P_{2} c_{1}} p_{1}+1 \quad e i\left(\cos t+k_{x}\right) \\
& P_{t}=\frac{2 p_{3} c_{2} A_{1}}{p_{1} c_{1} p_{2} \epsilon_{2}} e^{i(\omega \in-1 E x)}
\end{aligned}
$$

AND $x=0$ (AT THE BOUNDRY)

$$
\begin{aligned}
& \rho_{i}=A_{1} e_{i \omega}^{i} c_{2} / \rho_{1}-1 \\
& \rho_{r}=A_{1} \frac{\rho_{2} c_{2} c_{2} / \rho_{1} c_{1}+1}{\rho_{t}} e^{i \omega t} \\
& P_{t}=A_{1} \frac{2 \rho_{2} c_{2}}{\rho_{2} c_{2} \rho_{1} c_{1}}
\end{aligned}
$$

note that P_{i} and Prepare in phase. P_{p} tope ARE IN PHASE OR OUT OF PHASE, DEPENDING ON THE SICN OF PaCES, $C_{1}-1$

$$
\begin{aligned}
& \text { CONSIOER } 3 \text { MEOIA (STEADY STATE) }
\end{aligned}
$$

$$
\begin{aligned}
& \left.P_{\text {MODLE }}\right|_{x=0}=P_{R O G H T} \mid x=8 \Rightarrow A_{2}+B_{2}=A_{5} \\
& \left.U_{\text {MIDDLE }}\right|_{X=0}=\left.U_{R 1 C H T}\right|_{X=0}=\frac{1}{\rho_{2} C_{2}}\left(A_{2}-B_{2}\right)=\frac{1}{A_{3} C_{3}} A_{3} \\
& \text { EXPRESSIONS SMMILANTOTHETMOMEDAGEASE } \\
& \Rightarrow \frac{B_{2}}{A_{2}}=\frac{\frac{P_{3} C_{3}}{P_{2} C_{3}}-1}{\frac{P_{3} C_{3}}{B_{2}}+1}=\frac{r_{23}-1}{r_{23}+1} \\
& \frac{A_{3}}{A_{2}}=\frac{2 D_{3} C_{3}}{p_{3} C_{2} p_{2}} \\
& \text { BOUNDRYCONITICNS (C) } x=1 \\
& \left.\theta_{U E F T}\right|_{X=-}=0 \text { MHODEE } \mid x=\%
\end{aligned}
$$

$$
\begin{aligned}
& U_{\text {LEET }} \mid x=A_{B}=U_{R G G T} x=-G
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow A, Q^{i k, k-B, e^{-i k} k=r_{21}\left[A_{2} e^{i k} k-B_{2} e^{-i k} L\right]}
\end{aligned}
$$

$$
\begin{aligned}
& =r_{21} \frac{e^{i k_{2} b_{t}} \frac{r_{23}-1}{r_{23}+1} e^{-i k_{2} L}}{\frac{r_{23}-1}{r_{23}+1} e^{-i k_{2} L}} \\
& =r_{23} \frac{2 r_{23} \operatorname{cod} K_{2} L+i 2 \operatorname{An} k_{2} L}{2 r_{23} \cos k_{2} L+2 \cos k_{2}}
\end{aligned}
$$

THEN

CHOOSE $\quad k_{2} L=\frac{(n+1) \pi}{2}$

$$
\left(p_{2} c_{2}={\sqrt{p_{1} c_{1} p_{3} c_{2}}}^{n=}\right.
$$

THEN $\quad B_{1}=0$ (NO REFLECTION)

NON NORMAL RAYS:

BOUNDRY CONDITIONS:

$$
\Rightarrow A_{1} e^{i\left[\omega t-k \varphi \sin \phi_{1}\right]+B_{1} e^{i\left[\cos -k_{1} \sin \phi_{1}\right]}}=A_{2} e^{i\left[\omega t-k_{2} \sin \phi_{2}\right]}
$$

But $K_{1} \operatorname{\Delta in} \phi_{1}=k_{2} \sin \phi_{2}$

$$
\Rightarrow A_{1}+B_{1}=A_{2}
$$

VELOCITY BOUNDRY CONDITIONS:

$$
\left[U_{1} \cos \phi_{B_{1}} U_{n} \cos \phi_{1}\right]_{x=\theta_{A}} U_{2} \cos \phi_{2}{ }_{x=0}
$$

$$
\left[A_{1} C_{1}, p_{1} p_{1}\right]_{2} \cos \phi_{1}{ }_{2} p_{2} c_{2} \cos \phi_{2}
$$

$$
A_{A_{1}-B_{1}}^{A_{1}+B_{1}}=p_{1} C_{2} C_{1} \text { cod } \phi_{2}
$$

$$
\frac{B_{1}=\frac{p_{2} C_{2}}{\rho_{1}} \frac{\cot \phi_{2}}{A_{1} C_{2}} \frac{\cos \phi_{2}}{\cos \phi}+1}{c_{1} \cot \phi_{2} C_{1}}
$$

FOR No RELEETION: $\frac{p_{2} C_{2}}{p_{1}} \operatorname{cod}_{1} \phi_{1}=1 \Rightarrow \operatorname{cog} \phi_{1} \rho_{1} \varepsilon_{1} \operatorname{cog} \phi_{2}$

$$
\begin{aligned}
& P_{r}=B_{1} e^{i\left[\omega t-k_{1}\left(-x \cos \phi_{1}+\varphi \operatorname{inc} \phi_{1}\right)\right]} \\
& P_{t}=A_{2} e^{i\left[\omega t-k_{2}\left(x \cos \phi_{s}+Y \sin \theta_{2}\right)\right]} \\
& U_{i}=\frac{A_{1}}{\rho_{1}} e_{1} e^{i\left[\cos t-k\left(x \cos \phi_{1}+\gamma \operatorname{tin} \phi_{1}\right)\right]} \\
& U_{n} \Xi_{\Theta_{1}}^{p_{1} \beta_{1}} e^{i\left[\cos t-k_{1}\left(-x \cos \phi_{1}+r \sin \phi_{1}\right)\right]} \\
& U_{t}=\frac{\rho_{2} A_{2}}{\rho_{2}} e^{\alpha\left[\omega \bar{c} \cdot k_{2}\left(+x \cos p_{2}+Y A \tan \phi_{2}\right)\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{B_{1} e^{i k_{1} L}}{A_{1} e^{i k_{1} L}}=\frac{\left(r_{12} r_{23}-1\right) \cos k_{2} L+i\left(r_{12}-r_{23}\right) A n_{2} L}{\left(r_{12} r_{23} t 1\right) \operatorname{coz} k_{2} L+i\left(r_{12}+r_{23}\right) \operatorname{din} k_{2} L}
\end{aligned}
$$

ENERGY GONSIDERATIONS

$$
\begin{aligned}
& \frac{p}{p-10^{+(w r-k x)}} \\
& d r=P d s \\
& \frac{d E}{d t}=V d s U=d F V \\
& \text { (x)d }{ }^{\text {Pr }} \\
& \delta \varepsilon=0 d s u d d y \\
& \left(\frac{\delta S}{S t}\right)_{V E}=\frac{1}{T} \int_{0}^{T} P d \leq U \cos \psi d t \\
& =\frac{1}{T} \int_{0}^{r} A \operatorname{cog}\left(\omega C^{r} k x+\alpha\right) \frac{A}{\rho C} \cos (\omega t-k x \alpha) d t d s
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{A^{2}}{2 \rho C} d S
\end{aligned}
$$

$$
\begin{aligned}
& L=\frac{A^{2}}{40}
\end{aligned}
$$

ENERGY BOUNDRY CONDITIONI

$$
\begin{aligned}
& \Rightarrow \frac{\left|A_{1}\right|}{\left|A_{1}\right|^{2}}=\frac{P_{2} C_{2}}{P_{1}}\left[1-\frac{\left|E_{1}\right| 2}{\left|A_{1}\right|}\right] \frac{c_{0} \phi_{2}}{\operatorname{cota}_{1}} \\
& 12.1-10-1 \\
& \text { RECAL }\left|A_{1}\right|=r_{2}+1
\end{aligned}
$$

Chapter Problems

1.l When an object undergoes a change in volume due to applied stresses the quantity $\triangle V / V$ is defined as the volume strain or dilation. Show, for a rod of crosssectional area $A, ~ s u b j c o t e d ~ t o ~ e q u a l ~ a n d ~ o p p o s i t e ~ f o r c e s ~$ of magnitude F at its two ends, that

$$
\frac{\Delta V}{V}=\frac{F}{A X}(1-2 \sigma)
$$

1.2 A block of dimensions, X , and h is subjected tofoces on four of its six faces as indicated in the accompanying figure, If the height, h, remains unchanged when the forces are applied, show that

$$
\frac{S_{x x}}{e_{x x}}=\frac{Y}{1-\sigma^{2}}
$$

$$
F^{\prime}
$$

and

$$
\frac{e_{z z}}{e_{x x}}=-\frac{\sigma}{1-\sigma}
$$

$$
\begin{gathered}
F^{\prime} \\
\&-!
\end{gathered}
$$

A block of dimensions $\ell_{\text {. }}$. h is subjected to forces on all six faces, the forces being of such magnitude that the dimensions w and h remain unchanged when the forces are applied. Show that

$$
s_{y y}=s_{z z}=\frac{\sigma}{1-b} s_{x x}
$$

1.4 Solids and liquids are only slightly compressible and the bulk modulus $B=-\Delta P /(\alpha / y)$ is essentially independent of the size of $\triangle P$ and the mean pressure at which the measurement is made. This is not true for gases; it is only fox very small changes of pressure about sone mean pressure for which the quantity $\Delta P / \Delta y y^{\prime}$ is a constant. The equation of state of an ideal gas is $P V=n R T$ where n is the number of moles of the gas and R is the gas constant. Show that for small changes about some equilibrium state characterized by P_{o}, V_{0}, the isothermal bulk modulus is equal to P_{0}. When an ideal gas undergoes an adiabatic process.
the quantity $P V^{Y}$ remains constant $(X$ is the ratio of the specific heat of the gas at constant pressure io that at constant volume.) Show that for small changes about some equilibrium state characterized by P_{0}, V_{0}, the adiabatic bulk modulus is γP_{0}.
1.5. A brass rod 50 cm long and of square cross-section of l cm² area is compressed against a rigid wall by a force of $10^{1} \mathrm{nts}$ as indicated in the sketch below.

Find the stress component $S_{x x}$ at
a point P, a distance x from
the wall. Find $E_{x x}$, ${ }_{y y}$, and $\xi_{z z}$ at P. Find the displacement of a crossmsection 30 cm from the wall.
1.6 When a uniform rod is suspended from one end under its own weight ihe strain component $\quad \% \quad \log \left(\ell_{a} \cdots\right)$ where f is the density and \int_{0} the unstretched length. Each small piece of length dx in the unstressed rod is stretched an amount $d \xi=\epsilon_{x x} d x$. Find how $\epsilon_{\text {y }}$ varies with x, and find the length of the stressed rod in terms of f_{0}, Y, ρ and g.

1. 7 Which of the equations (1.13), (1.14), (1.15) and (1.16) are correct for all values of x from $x=0$ to $x=L$. Which need to be modified for $x>\frac{L}{2^{-}}$?
1.8 A light beam of circular cross-section of radius a is supported on two knife edges at its ends and loaded in the center by a weight W. Show that the bending moment at a point is given by

$$
M=\frac{y+a^{4}}{4} \frac{d^{2} y}{d x^{2}}
$$

where $y(x)$ is the equation of the center line of the distorted beam.
1.9 One end of a light beam is clamped in a wall and a load W is hung from the other end.
(a) Assuming the forces oxerted by the wall on the beam can be represented by a single
force F_{o} and a couple of moment M_{0}, find M_{0} and the components of F_{0} by isolating the entire beam:
(b) If the dimensions of the beam are L, w and $\frac{l}{l}$ and the distortion undergone by the beam is small, find the bending moment as a function of x and determine the equation $y(x)$ of the bent beam.
1.8 A light beam of circular cross-section of radius a is supported on two knife edges at its ends and loaded in the center by a weight W. Show that the bending moment at a point is given by

$$
M=\frac{X t \cdot a^{4}}{4} \frac{d^{2} y}{d x^{2}}
$$

where $y(x)$ is the equation of the center line of the dis. torted beam.
1.9 0ne end of a light beam is clamped in a wall and a load W is hung from the other end.
(a) Assuming the forces exerted
by the wall on the beam can
be represented by a single
force F_{0} and a couple of
moment M_{0}, find M_{0} and the
components of F_{0} by isolating the entire beam:
(b) If the dimensions of the beam are L, w and $\frac{f}{f}$ and the distor-
tion undergone by the beam is
small, find the bending moment
as a function of x and determine
the equation $y(x)$ of the bent beam.

WE PRIMEV, WAR IS AHILO

$$
\text { Fromic: }\left[\begin{array}{l}
a^{*} \\
n^{*} \\
w^{3}
\end{array}\right]=\left[\begin{array}{l}
2\left(1+E_{x}\right) \\
h\left(1-o G_{x}\right. \\
1\left(1-1 G_{x}\right.
\end{array}\right]
$$

im THAT $\quad<G_{x}<1$ y
THUS, THE HIEHEP NRUER T\&MAE AAY BE

$$
\begin{aligned}
& 6 \text { exs }(1-20) \\
& =\frac{F}{Y A}(1-2 O)
\end{aligned}
$$

$$
\begin{aligned}
& \text { nND: } \frac{8}{V}: V V^{2}-V\left(1+C_{x x}\right)\left(1-G E_{x x}\right)^{2}-1 \\
& \text { EYPANDMG: }
\end{aligned}
$$

$$
\begin{aligned}
& S_{Y Y}=S_{Z z}=0 \\
& \rightarrow\left[\begin{array}{l}
C_{x x} \\
e_{y} \\
\sigma_{y}
\end{array}\right]=\frac{F y}{A y}\left[\begin{array}{c}
1 \\
-\sigma
\end{array}\right]=\left[\begin{array}{c}
C_{x x} \\
-\sigma E_{x x} \\
\sigma G_{x}
\end{array}\right]=\left[\begin{array}{c}
\frac{e^{\prime}-0}{e} \\
h^{\prime}-h \\
h \\
w^{\prime} h
\end{array}\right] \\
& \text { HET } V^{\prime}=\ell^{\prime} W^{\prime} h \quad A N D \quad \Delta V=V^{\prime}-V=R^{\prime} W^{\prime} h^{\prime}=E W h \\
& \text { WHERE PRIMED WARIABLES APE SYTEM PAPAMETEAS }
\end{aligned}
$$

$$
\begin{aligned}
& S_{y 2}=0, a_{y}=\frac{h^{2}-h}{h}=0 \\
& {\left[\begin{array}{c}
e_{x x} \\
a \\
e_{z z}
\end{array}\right]-\frac{1}{1}\left[\begin{array}{ccc}
1 & -0 & \cdots \\
\cdots & 1 & -0 \\
0 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
S_{x x} \\
S_{y} \\
0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) } e_{x x}=\frac{1}{4}\left[S_{x x}-S_{y y}\right] \text { ANO } 0=-0 S_{x x}+S_{y} \text { b } \\
& \text { comblarme: } \\
& \epsilon_{x}=\frac{1}{1}\left[5 x_{x}-0^{2} 5_{x x}\right] \\
& =5 x 4\left[1 \cdots c^{2}\right] \\
& \Rightarrow \frac{5 y x}{6 x}-\frac{1}{1} \\
& \text { b) } S_{x x}=\frac{S_{x}}{x}\left[1-\sigma^{2}\right] \text { (rontave) } \\
& e_{z=}=-Y_{Y}\left(S_{N}+E Y\right) \\
& =\frac{\square}{Y}\left(5 x x^{+1}-5 x\right) \\
& =-\frac{c}{Y} S_{x x}(1+\sigma)
\end{aligned}
$$

THUS:

$$
\begin{aligned}
& G_{R}-\frac{9}{9} S_{x}(1+\sigma) \\
& e_{x h}=\frac{1}{Y} 5 x x\left(1-\sigma^{2}\right) \\
& =-\infty(1+1) \\
& =\frac{-0(1+6)}{(1+0)(1 \cdots)} \\
& =\frac{-0}{1-0}
\end{aligned}
$$

$(1-4)$

$$
B=\frac{-\Delta P}{\Delta V / V}=\left(\frac{\Delta P}{\Delta V}\right) V
$$

POR SMAB CHMNGES:

$$
B=-\frac{d}{d V} V
$$

a) 1 sotur pant

$$
\begin{gathered}
P_{0}=n R_{0} \\
p=n T_{0} \\
\frac{\Delta P}{\Delta V}=\left.\frac{b V}{\delta V}\right|_{0} V_{0} V_{0} \\
\beta=\left(\frac{n R T_{0}}{V_{0}^{2}}\right) V_{0} \\
=\frac{n R T}{V}=P_{0}
\end{gathered}
$$

b) ADIAHA

$$
\begin{aligned}
& \text { Let PV. C P } 10 \text { a constant } \\
& \Rightarrow P_{0}=C V_{s}^{*} \\
& \frac{\Delta P}{\Delta V} \simeq \frac{d P}{d V}=-\gamma C V_{a}^{-(d+1)} \\
& B=\left[-y C V^{\circ}(V+1)\right] V_{a} \\
& =4 \gamma \cdot V_{o}^{\prime \prime} \\
& =+8 P_{0}
\end{aligned}
$$

$(1-5)$

$$
\begin{aligned}
& \varepsilon_{x x}=\frac{1}{\gamma} \lg _{x}\left(A_{a}-x\right) \\
& d \varepsilon_{x}=\varepsilon_{x x} d x
\end{aligned}
$$

a) $\operatorname{FROM}(1-4)$

MENE:
b) $d \xi=\epsilon_{x x} d x$

$$
=\frac{1}{x} \rho\left(\theta_{0}-x\right)
$$

 $\xi\left(d_{0}\right)=\frac{1}{Y} \rho g \operatorname{lo}_{0}\left(e_{0} x\right) d x$

$$
\left.y_{0}\left(h_{0} x \cdots x^{2}\right)\right|_{x=t_{0}}
$$

$$
=\frac{12}{2 Y} 2
$$

$$
\begin{aligned}
l & =l_{0}+\left(l_{0}\right) \\
& =\ell_{0}\left[1+p g \cdot l_{0}\right]
\end{aligned}
$$

$$
\begin{aligned}
& E_{x,}=\frac{1}{y} S_{x x}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a^{*}}{y} 0 \theta(d, \cdots)
\end{aligned}
$$

$$
\begin{aligned}
& e_{x x}=\frac{1}{x} s_{x x}-\sigma_{y}-\frac{9}{y} S_{y s} \\
& E_{Y y}=-S_{x x}+\frac{1}{Y} S_{y}-\frac{1}{y} S_{2}= \\
& \text { BUT FOR THIS SYSTEM: } \\
& \text { Syy=Sza. }
\end{aligned}
$$

- $8 / 4$

As with the rectangular. cross section: $E_{\text {Xx }}=1 / R$ THUS: $\frac{d F_{x}}{2 \omega d r}=\frac{Y r}{R} \Rightarrow d F_{x}=\frac{2 Y}{R} \omega r d r$

$$
-\frac{2^{y}}{R}\left(q^{2}-r^{2}\right)^{1 / 2} r d r
$$

THE ropaue prom diary ane dix is:

$$
\begin{aligned}
d q_{0} & =2 r d F_{x} \\
& =\frac{4 Y}{R}\left(a^{2} r^{2}\right)^{1 / 2} r^{2} d r
\end{aligned}
$$

summing these torques an mae helve GENDINE MOMENT M:

$$
\begin{aligned}
& M=\int d r=\frac{4 x}{R} \int_{0}^{a} r^{2}\left(a^{a}-r^{2}\right)^{1 / 2} d r \\
& =\frac{4 x}{r}\left[-\frac{c}{4}\left(a^{2} \cdots 1^{2}\right)^{3 / 2}+\frac{a^{2}}{8}\left\{r\left(a^{2}-r^{2}\right)^{1 / 2}+a^{2} \sin |a|\right\}\right]_{0}^{a} \\
& =\frac{4 r}{1}\left[\left(\frac{q^{2}}{8}\right)\left(\frac{a^{0} \pi}{2}\right)\right] \\
& =\frac{Y \pi a^{\prime}}{4 R} \\
& \text { Now } R=\left[\left.\left.\frac{d^{2} y}{d x^{2}}\right|^{-1} \right\rvert\, 1+(d y)^{2}\right]^{3 / 2} \text { BUT Y DIOLACEMENT } \\
& 15 \text { so sMALL, } \frac{d y}{d x} 0 \Rightarrow\left[\begin{array}{l}
d y \\
d x
\end{array}\right] \\
& \therefore M=Y_{4} d a^{2}
\end{aligned}
$$

(b) 1501 nTmG sman secmant of The BLAM:

$$
97=-7 \cdot \cos ^{2}+
$$

$$
=-1 / 16+m x
$$

$$
d T_{2}-d \cdot d r_{x}=\partial y_{p} w d r
$$

$M=\int 1 T_{2}=2 \frac{y}{R} \int^{M / 2} r^{3} d r$
Ren $(h / 2)^{3}$

 $\Rightarrow d y=\frac{-12 w}{\gamma w}\left(\theta_{0}-x\right)$
$\frac{d y}{d x}--12 W_{1}^{3}\left(0 x-x^{2}+C_{1}\right)$
(o) $x=0, \frac{d y}{d x}=0=0,0$
$Y=\frac{-12 W}{Y a h}\left(\frac{2 x^{2}}{2}-\frac{x^{3}}{6}+C_{0}\right)$

$$
\begin{aligned}
& \sum E_{0-2} \quad E_{8}+F_{x}=0 \Rightarrow F_{8}=0
\end{aligned}
$$

$$
\begin{aligned}
& \sum \sum_{5}=0 \quad 4.8 x+m=0
\end{aligned}
$$

$(1-9)$
$y_{z} x^{\circ}$

CHAPTER II PROBLEMS

2.1. The solution of (2.2) can be written in the two equivalent forms:

$$
1
$$

$$
x=C \cos \omega_{0} t+D \operatorname{sen} \omega_{0} x
$$

or

$$
x=A \cos \left(\omega_{0} \dot{x}+\phi\right)
$$

Find A and ϕ in terms of C and D.
2.2 A particle executing simple harmonic motion is observed to have a speed of $3 \mathrm{~cm} / \mathrm{sec}$ at the instant it passes the midpoint of its path. If the frequency f_{o} of the oscillation is 10 hertz write an expression of the form (2.4) which will correctly describe the motion of this particle. Assume the particle is moving along the x-axis with the origin at the midpoint of the path, and that one starts counting time at the instant the particle is passing the midpoint and moving to the right.
(2.3) The real part of

$$
x(t)=4 e^{i \pi t}
$$

is a description of a particle executing simple harmonic motion. (a) What is the real part of this expression?
(b) What is the frequency of the oscillation? (c) What is
amplitude? (d) plot $x(t)$ in the complex plane at times $t=0, t=1 / 4, t=1 / 2, t=1 \mathrm{sec}$. What is the angular velocity of the point (or vector) representing $x(t)$?
(2.4), The real parts of

$$
x(t)=4 e^{i \pi x}
$$

and

$$
x_{1}(x)=\left(3+4 \frac{1}{n}\right) e^{i \pi x}
$$

represent simple harmonic motions. Do they have the same frequency? The same amplitude? Represent $\underset{\sim}{x}(t)$ and $x_{\mathcal{l}}(t)$ in the complex plane at $t=0$. What is the phase difference between $x_{n}(t)$ and $x_{1}(t)$? Which leads?
2.5. If $x_{1}(t)$ and $x_{2}(t)$ represent two simple harmonic motions of the same frequency and if

$$
x_{1}=\frac{x_{x}}{1+i}
$$

find the phase difference between $x_{1}(t)$ and $x_{2}(t)$. Which leads? Find the ratio of the amplitude of $x_{l}(t)$ to that of $x_{2}(t)$.
2.6 If $x_{1}(t)$ and $x_{2}(t)$ represent two simple harmonic motions of the same frequency and if

$$
x_{1}(2+i)=x_{2}(1-i)
$$

- Chapter I - ELEMENTS OF ELAS'ITCITY

The study of acoustics js basically a study of vibrations and wates. Practically all solids and fluids are elastic in the sense that the application of external forces to a small portion of a solid or filuid produces a distortion of that portion and gives rise to internal forces which tend to restore that portion to its original undistorted state. If the external forces are removed suddenly, an oscillation of the small portion generally ensues. This is transmitted to the neighboring portion of the medium, which in turn transmits it to their neighboring portions. We speak of this process as wave propagation. The nature of the waves and the speed with which they are propagated are intimately related to what are referred to as the elastic properties of the medium. Consequently, it will be appropriate to begin our study of acoustics by reviewing the basic concepts of elasticity.

1.1 Stress and Strain

If a long wire is suspended vertically from a fixed support and its length and diameter are measured for a number of different kilogram masses hung from its lower end (Fig. 1.la), one finds that the length increases and the diameter decreases linearly with the force mg exerted on the wire, as indicated in Fig. 1.1.6.* If the experiment is repeated with a number of wires of different lengths and diameters, but all made from the same material, then

[^0]then for each wire one obtains the linear relationship shown in Fig. 1.16. The slopes and intercepts, however, are in general different for each wire. If, instead of plotting the length $\quad 1$ and diameter d as a function of the applied force, one plots $\left(1-1_{0}\right) / l_{0}$, and $\left(d-d_{0}\right) / d_{0}$ against E / A where A is the orosssectional area of the wire, one obtalins identical graphs for all wires made of the same material. (Fig. 1.2). The quantities $\left(1-1_{0}\right) / 1_{0},\left(d \sim d_{0}\right) / d_{0}$, and F / A thus appear to be more useful quantities than l, d and F in describing the behavior of the material. The ratios $\left(1-1_{0}\right) / 1_{0}$ and $\left(d-d_{0}\right) / d_{0}$ are called strains, while the ratio F / A is called a stress.

The relation between the stress and the corresponding strain depicted in Fig. 3.2 can be represented by the equations

$$
\begin{align*}
& \frac{l-l_{0}}{d_{\infty}}=\frac{1}{\gamma} \frac{E}{A} \tag{1,1}\\
& \frac{d-d o}{d_{0}}=-\frac{q}{\gamma} \frac{E}{A}
\end{align*}
$$

where Y and σ^{-}are constants. These constants are characteristic of the material from which the wire is made, and are called Young's modulus and Poisson's ratio respectively. Typical values of these constants for a few materials are shown in Table 1.l.

TABLE 1.1

Substance	$\begin{gathered} \text { Young's Mod. Y } \\ \quad \mathrm{nts} / \mathrm{m} \end{gathered}$	Poisson's Ratio,	$\begin{gathered} \text { Bulk } \\ \frac{\text { Modulus }}{n \cdot s / m^{2}} \end{gathered}$	$\begin{array}{r} \text { Shear } \\ \text { Modnlus } \\ \frac{m / m^{2}}{} \end{array}$
Aluminum	7×10^{10}	0.35	7×10^{10}	2.7×10^{10}
Beryldium	31×10^{10}	0.05		
Brass	10×10^{10}	0.37	13×10^{10}	4×10^{10}
Copper	12×10^{10}	0.37	$15 \times 10^{\circ 0}$	5×10^{10}
Iron	20×10^{10}	0.29	16×10^{10}	8×10^{10}
Pyrex Glass	6×10^{10}	0.24	4×10^{10}	2.5×10^{10}
Lucite	0.4×10^{10}	0.4	0.7×10^{10}	0.1×10^{10}

The two constants, Y and σ^{F}, are sufficient to completely describe the elastic behavior of homogeneous isotropic materials. * The large numerical value of $Y\left(\infty 10^{\text {fin ts }} \mathrm{n} / \mathrm{m}^{2}\right)$ suggests that in the majority of cases encountered, the strains are very small quantities. For example a 10 KG mass hung on the end of a 1 mm diameter brass wire will result in a strain. $\left(1-I_{0}\right) / 1_{0}=1.3 \times 10^{-3}$. In what follows, we assume the strains are small compared to unity.

Other experiments indicate that equations (ll) are somewhat more general. If a rectangular block of dimensions l_{o}, w_{o}, and h_{0} is subjected to equal and opposite forces applied to any two opposite faces, the changes which occur in any of the dimensions can be expressed by equations of the form (1.1). For example, if F stands for the magnitude of the resultant of the set of forces acting on either end face of the block shown in fig. 1.3a, and A the area of one of the end faces then the experimental results indicate that

$$
\begin{equation*}
\frac{f-f_{g}}{f_{0}}=\frac{1}{7} \frac{F}{A} \tag{1.2}
\end{equation*}
$$

and

$$
\frac{a r-\omega_{0}}{\omega_{0}}=\frac{h=h_{0}}{h_{0}}=-\frac{F}{V} \frac{F}{A}
$$

Here 1, w, h refer to the length, width and height of the block, after the forces are applied and l_{0}, w_{0}, h_{0}, to those same quintithes before the forces are applied.

[^1]If forces are applied to the top and bottom faces as in
Fig. 1.3(b), then the results indicate that

$$
\begin{align*}
& \frac{h-h_{s}}{h_{0}}=\frac{l}{\gamma} \frac{F^{\prime}}{A^{\prime}} \tag{1,3}\\
& \frac{w=w_{0}}{\omega_{0}}=\frac{\ell-\rho_{0}}{\theta_{0}}=\frac{a^{*}}{A^{\prime}}
\end{align*}
$$

where F^{\prime} is the resultant of the set of forces acting on one of the faces of area A^{\prime}. If the direction of the two sets of forces in either Fig . 1.3 a or b is reversed, the signs of the righthand terms of equations (1.2) or (1.3) is changed. If the set of forces shown in Fig. $1.3 a$ and the set shown in Fig. I. 3b are applied simultaneously, it is found that the principle of superposition* holds, i, e.

$$
\begin{aligned}
& \frac{\theta_{0} \cos _{0}}{A_{0}}=\frac{1}{y} \frac{E}{A}=\frac{5}{A^{1}} \\
& \frac{u_{0}-u_{0}}{u_{0}^{\infty}}-\frac{U}{Y} A-\frac{V^{\infty}}{Y} \frac{P^{1}}{A^{\prime}} \\
& \frac{10-h_{0}}{h_{0}}=\frac{\theta}{\theta^{2}} \frac{E}{Y}+\frac{1}{A^{1}}
\end{aligned}
$$

[^2]
$$
(a)
$$
(b)

Fig 1.3

By using a coordinate system such as that shown in Fig. 天, the results of all experiments of this general nature can be summarized conveniently by the equations

$$
\begin{align*}
& G_{y y}=-\Phi^{9} S_{x x}+\frac{1}{\gamma} S_{y y}-\frac{x^{8}}{y} S_{33} \tag{1.4}\\
& G_{y 3}-\frac{x_{y}}{y} S_{y x}-\frac{9}{y} S_{y y}+\frac{1}{y} S_{33}
\end{align*}
$$

Here

$$
\begin{aligned}
& S_{x X}=\frac{x-c o m p o n e n t \text { of the resultant force acting on face } A B C D}{\text { area of face } A B C D} \\
& S_{y y}=\frac{y \text {-component of the resultant force acting on face } B C P Q}{\text { area of face } B C P Q} \\
& S_{z Z}=\frac{z \text {-component of the resultant force acting on face } A B Q R}{\text { area of face } A B Q R}
\end{aligned}
$$

As before $\epsilon_{x x}, \epsilon_{y y}, \mathscr{E}_{z Z}$ are called strains, $S_{x x}, S_{y y}$, and $S_{z z}$ are called stresses. Although it is assumed that equal and opposite forces are applied to a given pair of opposite faces, note that the stresses are defined in terms of the forces acting on faces $A B C D, B C P Q$, and $A B Q R$. These are the "positive" faces of the block in the sense that an outwardly drawn normal to any one of these faces points in the positive direction of one of the coordinate axes. It should be apparent that the stresses and the strains are algebraic quantities. $S_{x x}$, for example, is positive if the forces acting on face $A B C D$ are directed out of the block, and negative if the forces are directed into the block.

In the examples given above it was assumed that the external forces were zero initially and that the sirains resulted from the application of external forces producing the stresses $S_{x x}$, $S_{y y}, S_{z z}$. In many cases of interest, one is interested in the strains that occur when the external forces are changed from one set to another. For example, suppose as in Fig. 1.4 a rod has a length when subjected to equal and oppositeforces of magnitude F_{I} and a length l_{2} when subjected to forces of magnitude F_{2}. If the unstressed length is ℓ_{0}, one can write using equations (1, 4)

$$
\begin{aligned}
& l_{1}=l_{0}\left[1+F_{2} / A Y\right] \\
& l_{2}=l_{0}\left[1+F_{2} / A Y\right]
\end{aligned}
$$

where A is the cross-section of the rod. Subtracting and rearranging one obtains

$$
\frac{l_{2}-l_{1}}{l_{0}}=\frac{F_{2}-F_{1}}{A Y_{1}} \cong \frac{l_{2}-l_{1}}{l_{3}}
$$

since the difference between ℓ_{0} and l_{1} is very small. one interprets $\left(\ell_{2}-l_{1}\right) / A_{1}$ as the strain resulting from the change $\Delta F=F_{2}-F_{1}$ in the external forces. In like fashion, $\epsilon_{x x}, \epsilon_{y y}$, and $\epsilon_{z z}$ in equations (1.4) can be interpreted as the strains resulting from changes in the stresses of amounts $S_{x x}, S_{y y}$. $S_{z z}$.

Fin 1.1/

2.1 Bulk Modulus

If a block is subjected to a uniform pressure by placing it ligule as m Fog 1,5 , for example in a pressure tank containing some w he it is found experimentally that any change ΔP in the pressure results in a corresponding change, ΔV, in the volume of the block such that the ratio of the change in pressure to the change in volume per unit volume is a constant. This constant

$$
\begin{equation*}
B=-\frac{\Delta P}{\Delta V / V} \tag{1.5}
\end{equation*}
$$

is called the bulk modulus of the material from which the block is made. If the experiment is carried out in such a man er that the block is maintained at constant temperature during the experiment, the constant ratio is called the isothermal bulk modulus. If the changes in pressure and the corresponding measuremints of the changes in volume are made sufficiently rapidly so that during this time there is negligible heat transfer between. the block and the fluid, a different constant called the adiabatic bulk modulus is obtained.

It was stated earlier that the two constants y and σ are sufficient to describe the elastic behavior of homogeneous isotropic materials. The bulk modulus, B, must therefore be related to Y and ${ }^{\circ \prime}$. One can derive this relationship by applying equations budhastratic pressure as in Fig 1.5 . (1.4) to a block and subjected to a whatamesmace For convenience let V be the volume of the block when the pressure hem
 block is subjected to a pressure P. Remembering that pressure is a force per unit area, and that the forces on a surface due to pressure are always in the nature of itsould be apparent that when the pressure is P

$$
S_{x k}=S_{4 j}=S_{3 z}=-P
$$

and when the pressure is P^{\prime}

$$
S_{x x}=S_{y y}=S_{z z}=-p^{\prime}
$$

Interpreting $\epsilon_{x x}, \epsilon_{y y}$ and $\epsilon_{z z}$ of equations: (1.4) as the strains due to the change in pressure from P to p one obtains

$$
\epsilon_{x x}=\epsilon_{y y}=\epsilon_{z z}=\frac{1}{\bar{Y}}(2 \sigma-1)\left(P-P^{\prime}\right)
$$

Letting ℓ, w and h stand for the dimensions of the block when the pressure is $P, P^{\prime} w^{\prime}, h^{\prime}$, the dimensions of the block when the pressure is P^{\prime} one has from the definitions of $E_{x x}, \epsilon_{y y}$ and ϵ_{za}

$$
\begin{aligned}
V^{\prime}-V & =\ell_{w^{\prime} h}^{\prime}-\ell \ell_{w h} \\
& =\ell\left(1+\epsilon_{x x}\right) w\left(1+\epsilon_{y y}\right) h\left(1+\epsilon_{z z}\right)-\ell w h \\
& =V\left[\left(1+\epsilon_{x x}\right)^{3}-1\right]
\end{aligned}
$$

Since in almost all cases $E_{X X} \leqslant a$ we have as a good approximation

$$
V^{\prime} \dot{-} V=V\left[\left(1+x_{x x}\right)-1\right]
$$

so that

$$
\left(V^{\prime}-V\right) / V=3 \epsilon_{x X}=\frac{3}{Y}\left(2 \sigma^{*}-1\right)\left(P-P^{\prime}\right)
$$

and

$$
\begin{equation*}
B=-\frac{P^{\prime}-P}{\left(V^{\prime}-V\right) / V}=\frac{Y}{3\left(1-2 \sigma^{\prime}\right)} \tag{1.6}
\end{equation*}
$$

For all materials, B and Y are positive. Equation (l.6) suggests therefore that σ^{*} must be less than $1 / 2$, a result that is confirmed experimentally.
1.3. Shearing stresses and strains, shear modulus

Consider a block subjected to the set of forces illustrated in Fig. l. 6 a. As in our earlier examples, the forces acting on any one face are equal and opposite to the forces acting on the opposite face (this is necessary for the block to be in trans Lational equilibrium). Forces which are tangential to a surface such as those shown in the figure are referred to as shearing forces and the quantities

$$
S_{y z}=\frac{z-c o m p o n e n t ~ o f ~ t h e ~ r e s u l t a n t ~ f o r c e ~ a c t i n g ~ o n ~ f a c e ~ B C G F ~}{\text { area of face BFGD }}
$$

and

$$
S_{z y}=\frac{y \text {-component of the resultant force acting on face ABFE }}{\text { area of face ABFE }}
$$

are referred to as shearing stresses.: For the block to be in rotational equilibrium (consider, for example, torques about the x-axes) $S_{y z}$ must equal $S_{z y}$. Under the action of the set of shearing forces shown in Fig. l.6a, the block is deformed into a parallelepiped as indicated by the solid lines infig. l. Gb. The angle θ (in radians) is referred to as the shearing strain, and the ratio of the shearing stress to the shearing strain is called the shear modulus G, i.e.

$$
\begin{equation*}
G=\frac{S_{y z}}{\theta} \tag{1,7}
\end{equation*}
$$

For many materials, this ratio is found to be constant over a reasonably wide range of stresses. Because of the large numerical value of G (see table 1.1), the strain θ is usually small compared to unity.

[^3]
(b)
$$
F 191.6
$$

It is not very difficult to show that the shear modulus can be expressed in terms of Y and σ. Consider a block in the form of a cube of edge a_{o} and subject it to the set of forces shown in Fig. Liva. Let the resultant of the forces acting on each of the four faces be F and let $A=a_{o}{ }^{2}$ be the area of one of the (1.14) faces. Using equations (f) one finds that the height is shortened and the width is increased by an amount

$$
\Delta=\frac{E a_{0}}{A Y}[1+\sigma]
$$

as indicated in Fig. $\frac{1.76}{}$ which shows only the front face of the cube. After the distortions occur all portions of the block are in equilibrium and if one isolates any portion of the block it will be in equilibrium under the action of forces exerted by the material adjacent to the isolated portion. We inquire into the nature of the forces exerted on that portion of the block bounded

The front face of the rectangular parallelepiped is shown by the $1.7 d$ dotted lines in Fig. Fing. Isolating the triangular portion of the cube shown by the shaded area and drawing in the forces* acting on it (Fig. l.8a), it should be evident that for this triangular portion to be in equilibrium, the resultant, Fs, of the forces acting on the slant face must be tangential to the surface as indicated and must be equal in magnitude to $F / \sqrt{2}$.

[^4]
(a)

(c)
$$
k \quad a_{0} \quad \cdots
$$

$$
\left\langle\leqslant \quad a_{0}+\infty \quad \cdots \cdots\right)
$$
(b)

(d)

Fig 1.7

(a)

(b)
$\operatorname{Fg} 1.8$

1s.... a_{0}

(a)

$$
\left\langle\beta+\frac{a_{0}(s+n)}{A} \quad\right|
$$

(b)

Fig 1.9

(o)

(b)
rig hio

Similarly, by jsolating the other three triangular sections and using Newton's third law one can conclude that the forces exerted on the rectangular parallelepiped are the forces shown in Fig. l. 8b. The area, A_{S}, of one of the side faces of the parallelepiped is equal to $\frac{a_{0}^{\alpha}}{\sqrt{2}}$ or $A / \sqrt{2}$, and since $\mathrm{F}_{\mathrm{S}}=\mathrm{F} / \sqrt{2}$ it follows that the shearing stress F_{s} / A_{S} at the side face is numerically equal to the (normal) stress F / A at the surface of the cube. Note that the arrangement of the shearing forces on the faces of the parallelepiped is exactly the same as the shearing forces shown acting on the block of Fig. l. Ga; consequently, these shearing forces should produce some shearing strain, θ, which in this instance can be calculated in terms of y and σ.

Figures 1.9a and b illustrate the distortions produced in the rectangular parallelepiped when the forces are applied to the cube. The end faces of the parallelepiped which were originally square become parallelograms. In Fig. lloa, the original square face (red lines) and the distorted end face (dashed lines) are shown with the left edge superimposed and Fig. l. lob shows these two faces after the original square face has been rotated through an angle of $\theta / 2$ with respect to the dashed face. From Fig. $1.9 b$ the increase, \triangle, in the length of $F a_{10}\left(1+O^{-}\right) / A Y^{\prime}$
 the angle $H D E$ in Fig. l.lob is very nearly equal to 45°. Hence from the figure

$$
\delta=\frac{\Delta}{\cos 45^{\circ}}=\frac{F a_{0}\left(i+0^{\circ}\right)}{A V} \sqrt{2}
$$

and

$$
\theta=\frac{\delta}{a_{0} / \sqrt{2}}=\frac{F(1+1) 2}{\Lambda y}
$$

and

$$
\begin{equation*}
\frac{F / A}{\theta}=\frac{F_{s} / A s}{\theta}=B=\frac{\gamma}{2(1+0)} \tag{1.8}
\end{equation*}
$$

This equation expresses the relationship between the shear modulus, G, and Young modulus, Y, and Poisson's ratio C^{-}

4. Stress and strain at a point

In section 3 we have seen how external forces acting on a cubical block give rise to stresses on the surfaces inside the block. The stress at any point of the block can be defined in terms of the stresses on the faces of an infinitesimal sur face containing the point.* Similarly one can define the strain at a point of the block in terms of the distorifons taking place in a small volume surrounding the point. To illustrate how one determines the stress and strain at a point we consider a thin rod which is hung from one end as in Fig. J.lla. Let the rod be uniform of density P and mass m and have a length 1_{o}, width w_{0}, and thickness h_{0} when unstressed (e.g. when resting on a horizontal table). When the rod is hung from one end, its length will increase slightly due to the stresses set up by the gravitational force. We wish to determine the stress at some general point P located a distance x from the supported end. First it should be evident that since the entire rod is in equilibrium, the force

[^5]exerted by the support must equal mg, the weight of the rod. If one isolates the portion of the rod between the support and point P, as indicated in Fig. I. llb, the forces acting on this portion are the force exerted by the support, the gravitational labeled force, and a force labeled \vec{F}, which represents the force exerted by the lower portion of the rod. Since the isolated portion of the rod is in equilibrium we must have
$$
F_{x}=m g-\rho\left[h_{0} w_{0} x\right] q
$$
where F_{x} is the x-component of \vec{F}. If we let the cross-section at P be the bottom surface of a small rectangular parallelepiped containing P (Fig. I. Ilo) this bottom surface is a positive face of the parallelepiped and
\[

$$
\begin{align*}
S_{x x}=\frac{F_{0}}{h_{0} w_{0}} & =\frac{m g}{h_{0} w}-p g x \\
& \therefore \tag{1.9}\\
& =\operatorname{pg}\left[f_{0}-x\right]
\end{align*}
$$
\]

since $m=\rho\left[h_{0} \omega_{0} l_{o}\right]$. The stress component $S_{x x}$ thus varies from point to point of the rod being a maximum at the top of the rod and zero at the bottom.

The strain at point P is defined in terms of the distortion undergone by a small segment, $\triangle x$, of the rod located at P in Fig. 1. 12a. When the rod is hung from one end this segment is stretched to a length Δx_{S} as indicated in Fig. 1.12b. The strain (component) at P is defined as

$$
G_{x \rightarrow}=\operatorname{lnm}_{\Delta x+0} \frac{A x_{5}-\Delta x}{A x}
$$

(c)
(c)
(b)

Fig 1.11

unstinarger
(a)

$\operatorname{Fig} 1.12$

As depicted in Figures $1.12 a$ and b, both the cross -section located at x and that at $x+\Delta x$ are displaced slightly when the rod is suspended. The displacement that any given cross -section of the rod undergoes when the rod is hung depends on the location of the cross-section, and there is some, at the moment unknown, function, say $\xi(x)$ which specifies how far any given cross section is displaced. The displacements of the cross -sections at x and $x+a x$ are consequently labelled $\xi(x)$ and $\xi(x+\Delta x)$ respectively. It is evident from Fig. 1. 12b that

$$
\Delta x_{\xi}-\Delta x-\xi(x+\Delta x)-\xi(x)
$$

so that

$$
\begin{equation*}
C_{x x}=\operatorname{lom}_{\Delta x \rightarrow 0} \frac{\xi(x+\Delta x)-f(x)}{\Delta x}=\frac{d \xi}{d x} \tag{1,10}
\end{equation*}
$$

The strain component $\epsilon_{x x}$ at a point is thus equal to the derivative of the function $\xi(x)$ which gives the displacement of each crosssection of the rod. It is generally assumed that the stress-strain relations expressed by equations (1.4) hold at every point. Consequently for the example we are considering

$$
\begin{equation*}
\epsilon_{x x}=\frac{1}{y} S_{x x}=\frac{1}{y} \operatorname{pg}\left(g_{g}-x\right) \tag{1.11}
\end{equation*}
$$

Thus the strain also varies as x being a maximum at the supported end of the rod and zero at the bottom end. We can find $\xi(x)$ by integrating (1. Il) obtaining

$$
\begin{equation*}
\xi(x)=\frac{1}{y} \lg \left[\rho_{0} x-\frac{x^{2}}{2}\right] \tag{1.12}
\end{equation*}
$$

The constant of integration is zero in this instance since the top cross-section of the rod has zero displacement.

5. Thin beam

As a second example illustrating how one calculates stresses and strains let us consider a thin beam of length L resting on two knife edges and supporting a load W at.its center, as indicated in Fig. I. l4a. For simplicity let us assume that the weight of the beam itself may be neglected. Let the beam have a rectangular cross-section of width wand height h. Let P be some general point in the rod, located a distance x from the left end and let us first consider the stresses at this point. (As mentioned earlier in a footnote, in calculating the stresses from equilibrium conditions one ignores any distortions that may have taken place when the beam was loaded.) Noting first that the entire beam is In equilibrium one concludes that the force exerted by each knife edge is $W / 2$. Isolating the portion of the beam of length x as indicated in Fig. I. I3a, one notes that the forces acting on the isolated portion are the force of the knife edge at the left end and the forces exerted by the right hand portion of the rod. This latter set of forces are distributed in some manner over the crosssection of the beam as indicated in. Fig. l. I3b. As far as equili... brium of the isolated portion is concerned, this set of distributed forces can be replaced by a single force \vec{F} and a couple of moment M as indicated in Fig. 1.14c.* $\quad \vec{F}$ in turn is usually resolved into two components F_{x} and F_{y}, referred to respectively as the normal and shearing forces. M is called the bending moment and is usually depicted as indicated in Fig. 1. 34 . (More properly, M is the

[^6]z-component of the torque, due to the couple, where the z-axis is taken to be perpendicular to the plane of Fig. l. 13a and pointing out of the paper.) From the fact that the isolated portion of the rod is also in equilibrium, it follows that
\[

$$
\begin{align*}
& \mathrm{F}_{\mathrm{x}}=0 \\
& \mathrm{~F}_{\mathrm{y}}=-\mathrm{W} / 2 \tag{1,13}\\
& \mathrm{M}=\mathrm{WX} / 2 \tag{1,14}
\end{align*}
$$
\]

If we let the cons-section at P be the right hand surface of a small rectangular parallelepiped containing P, then this right hand surface is a positive sur face and

$$
\begin{aligned}
& S_{x x}=\frac{F_{x}}{w h}=0 \\
& S_{y y}=\frac{F_{y}}{w_{h}}=-\frac{w}{2 w h}
\end{aligned}
$$

The force components F_{x}, F_{y} and the couple M represent essentially the resultant or net effect of the set of distributed forces that the right hand portion of the rod exerts on the isolated portion. It turns out to be profitable to examine in more detail the nature of these distributed forces as revealed by an examination of the distortions undergone by the rod.

The deformation which the beam undergoes when loaded is shown greatly exaggerated in Fig. l. l4a. If the deformation is slight, it turns out that the center (dashed) line of the beam remains unchanged in length. Strips of the beam lying above this line are shortened, while strips lying below the line are lengthened. We isolate for consideration a small segment of the beam of length Δx, located a distance x from the left end. When the beam is deformed, the centerline of this small segment still has a length
Δx and lies some distance y below the centerline of the beam when the beam is unloaded. Fig. J. I4c is an enlarged view of the segment. The distance labelled B in this figure is the radius of curvature at the point of the dashed curve in Fig. l. 3 , 4 b whe Δx is located. The length of the shaded strip in Fig. I.líc which lies a distance r below the centerline of the segment is $(R+r) A \quad$. The length of this segment before the beam was loaded was $R \Delta \phi$, since with the beam unloaded all strips are the same length and the length of the center line doesn't change when the beam is deformed. The change in length of the shaded strip due to the deformation is thus $r \Delta$ and consequently the sirain (component) $6_{x x}$ at the point where the strip is located is $\because \triangle \emptyset / R \Delta \emptyset$ or r / R. Since the strain at a point is related to the stress at a point by equation (1.4) the stress at the point where the shaded strip is lacated must be $\gamma_{0}=\gamma h / B$ To produce such a stress the actual forces dF exerted on the end surface of the shaded strip (see Fig. l.I4d) by the portion of the beam to the right must have a componont $d F_{x}$, where

$$
\frac{d E_{R}}{W d h}=Y \frac{h}{R} \quad \Rightarrow \quad d E_{\mathrm{R}}=Y \frac{\cos }{R} \omega d
$$

For a strip located a distance r above the centeriine, the same considerations lead to the conclusion that the forces dF on its end face must have a component $\mathrm{dF}_{\mathrm{x}}^{\prime}$ equal to-dFx as suggested in Fig. I.l5e. Both $\overrightarrow{d F}$ and $\overrightarrow{d F}$ tend to rotate the element about the z-axis, the torque due to both being

$$
d r_{y}=2 k d F_{x}=2 \frac{Y r^{2}}{P} \omega d \lambda
$$

The total torque due to forces acting on the end faces of all the strips is then the bending moment M. Thus

$$
M=\int_{0}^{h / 2} 2 \frac{y h^{2}}{R} u d n=\frac{Y n h^{3}}{12 R}
$$

This last expression relates the bending moment at a point to the radius of curvature of the rod at that point. In practically ajl textbooks on calculus it is shown that for any curve $y(x)$, the radius of curvature at a point is given by

$$
R=\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}{\frac{d^{2}}{d x^{2}}}
$$

Applying this relation to the curve of the centerline and remembering that for slight bending the slope $\frac{d y}{d x}$ at any point is small compared to unity, we have to a good approximation

$$
R \cong \frac{1}{d^{2} g / d x}
$$

so that the bending moment is given by

$$
\begin{equation*}
M=\frac{Y w h^{3}}{12} \frac{d^{2} y}{d x^{2}} \tag{1.15}
\end{equation*}
$$

This will prove to be a very useful and necessary relation later on in the derivation of the wave equation for waves in rods. We can u se it now to find the curve into which the beam is bent when the load is applied. Substituting from (1.14) one obtains

$$
\frac{d^{2} y}{d x^{2}}=\frac{12}{Y w h^{3}} \frac{W}{2} x
$$

Integrating twice yields

$$
y=\frac{W}{Y w h} x^{3}+C x+C^{1}
$$

where C and C^{1} are constants of integration. Taking $y=0$ at $x=0$ and $\frac{d y}{d x}=0$ at $x=\frac{L}{2}$, the above expression becomes

$$
\begin{equation*}
y=\frac{w}{y w t^{3}}\left(x^{3}-\frac{3}{4} t^{2} x\right) \tag{1.16}
\end{equation*}
$$

1.6 Rod under torsion

As a final application of the stress strain relation we consider the experiment illustrated in Fig. I. 15a, in which a rod is clamped at one end, and a known torque fext is applied to the other end by means of the two forces labelled F . Since the entire rod is in equilibrium, the clamp must exert on the rod forces which give riso to a torque equal and opposite to that exerted at the top end of the rod. If one isolates a section of the rod of length x, since it too is in equilibrium, the forces exerted by the top section on the isolated portion must give rise to a torque exactiy equal in magnitude to fext as indicated in rig. 1.4 . We can determine the nature of the forces giving rise to this torque, by considering the distortions that occur when the torque is applied.

When the rod is stressed by applying equal and opposite torques to the two ends. the rod undergoes a deformation in which each cross-section of the rod rotates about the axis of the rod through some angle which depends on where the cross-section is located. The angle through which a given cross section is rotated is measured, between a line fixed in the cross section and a line fixed in space. For example, in Fig. 1. 15 , the line fixed in space is the foonis, and the figure shows the top surface of the rod as having been rotated through an angle ϕ, and the cross section at x as being rotated through an angle $y^{\prime}(x)$. It is

Fig 1.4

Fig 1.15
assumed that the bottom surface. is prevented from rotating by the clamp. We isolate the section of the rod of length $A x$ and imagine it to be made up of a large number of thin concentric cylindrical shells. Fig. l. lGa shows one of these shells before the distortion has occurred. Jf the shell is thjn the portion abcdefgh of the shell bounded by two radial sections makjng a small angle with each other, will be (very nearly) a rectangular parallelepiped. An enlarged view of this parallelepiped is shown in Fig. l. l6b. When the tonque is applied, each radially line in the cross section at $x+A x$ rotates through some angle labelled $\psi(x+\Delta x)$ while each radial line in the cross-section at x is rotated through an angle f (x), as suggested in pig. I. 160. The effect of these two rotations on the rectangulat parallelepiped is shown in Fig. 1. l 6d, where the bottom surfaces of undistorted and distorted parallelepiped are shown superimposed, It should be evident, that the effect is to produce a shearing strain θ equal to

$$
\theta=\frac{d d^{\prime}}{\Delta x}=\frac{\lambda\{\psi(x+\Delta x)-\psi(x)\}}{\Delta x}
$$

which in the jimit as $A x \rightarrow 0$ becomes

$$
\theta=r \frac{d V^{\theta}}{d x}
$$

1.17

Since the shearing strain and shearing stress are related by equation (1.7), there must exist at this point a shearing stress, GQ, where G is the shear modulus. To praduce such a shearing stress requires a set of foices $\overrightarrow{\text { dF }}$ acting tangentially to the top surface of the rectangular parallelepiped as indicated in Fig. I. I7. a and b. Such a set of forces would produce a torque of magnitude

in 416

$$
d r=x d F=x_{0} G \theta d A=\pi\left[G \frac{d \psi}{d x}\right] d A
$$

where dA is the area of the top face of the parallelepiped. Since all of the elements of the area of the top surface of the cylindrical shell have similar shearing forces, the total torque due to the forces acting on all the elements is

$$
\Delta T=2\left[\sigma_{2} d \underline{d}\right] 2 \pi h A x
$$

Since the isolated section of rod was considered to be made up of thin cylindrical shells, and since (1.18) applies to each shell, the total torque due to all the forces exerted on the surface at x by the portion of the rod above it is

$$
N=\int_{0}^{a} \pi \sigma_{n} \frac{\partial \psi}{\partial x} 2 \pi n d x=\frac{5 a^{4} \pi}{2} \frac{d p}{d x}(1.19)
$$

where ${ }^{\boldsymbol{R}}$ is the radius of the rod. This is an important relationship which will be useful later in the study of torsional waves in rods. From our consideration of equilibrium, the torque due to the forces exerted by one portion of the rod on the adjacent portion at any cross-section was equal to the externally applied torque $T_{\text {ext }}$. Consequently, the right hand side of (I. 19) must equal Text, a constant. It follows that $\frac{d y}{d x}$ must also be constant so that

$$
Y=C x+C^{\prime}
$$

where C and C^{\prime} are constants of integration. Noting that $\psi=0$ when $x=0$ and $\psi=0$ when $x=L$, one obtains

\because
\cdots
\cdots

6
(b) The antolay

$$
\psi=\frac{\Phi}{4} x
$$

The external torque required to twist one end of a rod through an angle ϕ is thus

$$
q_{01}=\frac{6 a^{4} \pi}{2} \frac{b}{b}
$$

Since $\frac{d y}{d x}$ is a constant, the shearing strain θ given by equation (1.17) is independent of x but does vary with r being a maximum for those elements located at the edge of the rod.

1.7 Generalized Concept of Strain

Let $M(x, y, z)$ be a point in the interior of an unstressed body (Fig. I.18a). Imagine an observer at M has some means of identifying all of the points in his immediate neighborhood. Using three appropriate points, say M_{1}, M_{2}, M_{3} he sets up a rectangular coordinate system with its origin at m such that $\overline{M M}_{J}, \overline{M M}_{2}, \overline{M M}_{3}$ correspond respectively to his x, y and z axes. If external forces are applied to the body (Fig. 1.18b) points $M_{1} M_{1}, M_{2}$, and M_{3} will in general be displaced to new positions, say M', Mi, Mi, and M3. If after this displacement, the observer reports that his coordinate system (determined by $\overline{M_{1}^{\prime} M_{1}^{\prime}}, \overline{M_{2}^{\prime}}, \overline{M_{2}^{\prime} M_{3}^{\prime}}$ is still rectangular and all the neighboring points are precisely in the same positions relative to it as before the displacement, one says that the strain at M is zero, If the relative positions of the neighboring points has changed, then one says that there is a strain at M. It follows from this concept that if as illustrated in Fig. 1.l9a) a body undergoes at pure translation, ice. a motion in which each point moves the
same distance along a path that is parallel to a fixed line, the strain is zero. Also, if as illustrated in Fig. 1.19b, a body undergoes a pure (small) rotation, θ, about some axes, the strain is also zero.

Let $\mathbb{N}(x+d x, y+d y, z+d z)$ be a point in the neighborhood of $M(x, y, z)$ when the body is unstressed. When the body is stressed, then in general both M and \mathbb{N} are displaced as illus on crated in fig. I. 20 which shows a two dimensional version of the situation. Let the x, y, and z components of the displacement δ of point M be ξ, Y and f respectively, and let the cores bonding quantities for the displacement $\vec{\Delta}$ of point \mathbb{N} be be ξ_{*}, η_{N}, and $j_{\|}$. Now the displacement $\stackrel{\text { and }}{ }$ its components depend on the location of the point M, i, e, S, Y and f are all functions of x, y and z. Since N is near $\begin{aligned} & \text { i } \\ & \text { one has from }\end{aligned}$ the calculus

$$
\begin{aligned}
& d \xi=\xi_{d}-\xi=\frac{\partial \xi}{\partial x} d x+\frac{\partial \xi}{\partial y} d y+\frac{\partial \xi}{\partial z} d y \\
& \frac{d}{d}=\eta_{t}-\eta=\frac{\partial \eta}{\partial x} d x+\frac{\partial \eta}{\partial y} d y+\frac{\partial \eta}{\partial z} d z \\
& d J=J_{N}-y=\frac{\partial J}{\partial x} d x+\frac{\partial J}{\partial y} d y+\frac{\partial y}{d z} d z
\end{aligned}
$$

where the partial derivatives of \mathcal{F}, ℓ, and \bar{l} are evaluated at the point $M(x, y, z)$. If these partial derivatives are known for point M one can calculate $d \xi$, d and $d f_{\text {for any point in }}$ the neighborhood of M, and thus determine if there is a strain at M. To determine the relation between these partial derivatives and the strain at the point, one considers the distortion undergone by a tiny cube located at M as indicated in Fig. 1.20a. All points of this cube are in the neighborhood of M. Suppose for example, the external forces produce a strain such that $\left\{\begin{array}{l}\text { and } I \text { are all zero, and all of the partial derivatives }\end{array}\right.$ of these quantities excent $\frac{\partial f}{\partial x}$ are zero. Under these conditions the cube is stretched (or compressed) in the direction as indicated in Fig. l. 20b, the change in the x-dimension of the cube divided by the original x-dimension being exactly $\partial s / d y$, which was defined earlier as $\epsilon_{k s}$. Similarly by considering a distortion in which only ah/dy or $\partial y^{2} / \partial$ is zero, one can see that $\partial / / d_{x}=G_{y}$ and $\frac{\partial \rho}{\partial z}=\epsilon_{z z}$. If the distortion is such that only $b s / d y$ is different from zero and positive, then the cube is sheared through an angle $O_{y}=3 / y y^{\prime}$ as indicated in Fig. 1.20c. If the distortion is such that only $\partial h / a x$ is different fromzero, the cube is sheared through an angle $O_{2}=\Delta h \mid d x$ as indicated in Fig. 1.20d. If both 3 , drand $25 / y$ are different fromzero, and all other derivatives are zero, then the cube is sheared through an angle $\theta_{1}+\theta_{2}$ as indicated in Fig. 121 a, band c which shows the distortion of the top (or bottom) face of the cube. From considerations such as these, one concludes that the following quantities are sufficient to describe the strain at a

$$
y
$$

$$
\therefore
$$

k)

$$
\begin{aligned}
& a s=\frac{d y}{d} d y \\
& d=0 \\
& b=0
\end{aligned}
$$

dre

$$
\|
$$

(b)

(d)

$$
\begin{aligned}
& s=0 \\
& d=\frac{y}{d x} x \\
& s 5=0
\end{aligned}
$$

$\operatorname{Fig} 1.20$

19121
point*

$$
\begin{align*}
& \epsilon_{R Y} \frac{\partial E}{2 x} \\
& \epsilon_{x y} \times \frac{1}{2}\left(\frac{2 \xi}{2 y}+\frac{\partial h_{3}}{\partial y}\right)=\epsilon_{y z} \\
& \epsilon_{y y}=\frac{d y}{d y} \tag{1,2}\\
& E_{3}=\frac{1}{2}\left(\frac{\partial f}{2 g}+\frac{y}{6}\right)=\theta_{2} \\
& \epsilon_{33}=\frac{25}{3} \\
& \epsilon_{y 3}=\frac{1}{2}\left(\frac{\partial 1}{2 y}+\frac{d y}{\partial y}\right)=\epsilon_{y}
\end{align*}
$$

If all of the strain coefficients, $\epsilon_{x x} \epsilon_{x y} \epsilon_{x 3}, G_{y x} \epsilon_{y y} \epsilon_{y}$
 of the cube at M will occur. As indicated above, if $\epsilon_{x x}, \epsilon_{y y}$ or $E_{z z}$ are different from zero, the distortion consists of stretching or shortening the x, y or z dimensions of the cube, while if x^{\prime} $E_{x} x^{6}$ or are different from zero, the distortion consists of shearing the cube. The nine components $\epsilon_{x x}, \epsilon_{x y}=-\cdots \ldots-$ Ez' only six of which are independent from what is called the strain tensor.
1.8 Generalized Concept of Stress. Stress Strain Relations

The stress at a point $M(x m y, z)$ in a stressed body is defined in terms of the forces exerted on the three positive faces of a tiny cube located at point M as indicated in Fig. 122. Under conditions of equilibrium it is assumed that if the cube is sufi.. ficiently small, the forces exerted on any face of the cube by the material outside the cube are exactly equal and opposite to those forces exerted on the opposite face by the material outside

[^7]

Fin 1.27
the cube, so that the forces exerted on the positive faces of the cube are actually representative of the forces exerted on the parallel surfaces passing through point. M. Tf F $\mathrm{Fx}_{\mathrm{A}} \mathrm{F}_{\mathrm{xy}} \mathrm{F}_{\mathrm{F}} \mathrm{F}_{\mathrm{xz}}$ are the x, y and z components respectively on the force F_{1} acting on face $A B C D, F y x, F y y, F_{y z}$ the corresponding components of ${ }^{\prime}$ 2' $^{\prime}$ and $F_{z x}, F_{z y}, F_{z z}$ the components of F_{z}, then the stress at M is specified by the nine components

$$
\begin{array}{lll}
S_{x x}=\frac{F_{x x}}{A} & S_{x y}=\frac{F_{x y}}{A} & S_{x z}=\frac{F_{x z}}{A} \\
S_{y y}=\frac{F_{y y}}{A} & S_{y x}=\frac{F_{y x}}{A} & S_{y z}=\frac{F_{y z}}{A} \\
S_{z z}=\frac{F_{z z}}{A} & S_{z x}=\frac{F_{z x}}{A} & S_{z y}=\frac{F_{z y}}{A}
\end{array}
$$

where $A=d x$ dy dz is the area of a face of the cube. For equilibrium of the cube as regards rotation one must have $S_{x y}=S_{y x}, S_{x z}=S_{z x}$ and $S_{y z}=S_{z y}$ sọ there are actually on six independent stress components. The components $S_{x x}$, Syy and $S_{z z}$ are called normal stresses. while the other components are called shearing stresses.

It is generally assumed that each stress component is a linear function of six strain components*, i.e.

[^8]\[

$$
\begin{aligned}
& S_{x x}=c_{11} \epsilon_{x x}+c_{12} \epsilon_{y y}+c_{13} \epsilon_{z z}+c_{14} \epsilon_{x y}+c_{15} \epsilon_{x z}+c_{16} \epsilon_{y z} \\
& S_{y y}=c_{21} \epsilon_{x x}+c_{22} \epsilon_{y y}+c_{23} \epsilon_{z z}+c_{24} \epsilon_{x y}+c_{25} \epsilon_{x z}+c_{26} \epsilon_{y z} \\
& \vdots \\
& \vdots \\
& \vdots \\
& S_{y z}=c_{61} \epsilon_{x x}+c_{62} \epsilon_{y y}+c_{63} \epsilon_{z z}+c_{64} \epsilon_{x y}+c_{65} \epsilon_{x y}+c_{66} \epsilon_{y z}
\end{aligned}
$$
\]

where the coefficients $C_{11}, C_{12}, \ldots . . .{ }^{C_{65}}, C_{66}$ are constants, characteristic of the material. As one might suspect, for an isotropic solid some of these coefficients are zero and many of the others are equal; in fact it turns out that there are only two independent coefficients. For an isotropic solid the strain relations become

$$
\begin{aligned}
& s_{x x}=\left(c_{1}+c_{2}\right) \epsilon_{x x}+c_{1} \epsilon_{y y}+c_{1} \epsilon_{z z} \\
& s_{y y}=c_{1} \epsilon_{x x}+\left(c_{1}+c_{2}\right) \epsilon_{y y}+c_{1} \epsilon_{z z} \\
& s_{z z}=c_{1} \epsilon_{x x}+c_{1} \epsilon_{y y}+\left(c_{1}+c_{2}\right) \epsilon_{z z} \\
& s_{x y}=c_{2} \epsilon_{x y} \\
& s_{x z}=c_{2} \epsilon_{x z} \\
& s_{y z}=c_{2} \epsilon_{y z}
\end{aligned}
$$

where

$$
C_{1}=\frac{\sigma Y}{(1+\sigma)(1-2 \sigma)} \quad \text { and } \quad C_{2}=\frac{X}{1+\sigma}
$$

Here Y is Young's modulus and ow is Poisson's ratio. The first
three of these equations are, of course, the inverse of equations (1.4). It is worth mentioning again that $\epsilon_{x x^{\prime}} \epsilon_{x y} \ldots$ in (1.22) can be interpreted as the strains resulting from changes in the stresses of amounts $S_{x x}, S_{x y} \ldots$.

For an ideal fluid, the stress strain relationships are even simpler:

$$
\begin{align*}
& S_{x x}=S_{y y}=S_{z z}=B\left(\epsilon_{x x}+\epsilon_{y y}+\epsilon_{z z}\right) \tag{1.23}\\
& S_{x y}=S_{x z}=S_{y z}=0
\end{align*}
$$

where B is the bulk modulus. Alsofor a fluid, the change in the stress is simply equal to the change the negative of the change in pressure, $\triangle P$, so that

$$
\Delta P=-B\left(\epsilon_{x x}+\epsilon_{y y}+\epsilon_{z Z}\right)
$$

or

$$
\begin{equation*}
\Delta P=-B\left(\frac{\partial}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial \gamma}{\partial z}\right) \tag{1.24}
\end{equation*}
$$

This relationship will prove useful in developing the wave equation for waves in fluids.

CHAPTER II HARMONIC MOTION

Simple harmonic motion (along with uniform circular motion) is perhaps the simplest type of repetitive motion that one can imagine. Partly because of this, and partly because of the simplicity of its mathematical representation, simple harmonic motion proves to be useful in the description of a great many diverse physical phenomena. It plays a particularly important role in the study of vibrations and waves; as we shall learn presently, the vibrations of any material object or any small portion of a medium through which a wave is travelling is almost invariably assumed to be simple harmonic or made up of some combination of simple harmonic motions. Because of its importance, it will be worthwhile to review harmonic motion before beginning the study of waves.

2.1 The Simple Harmonic Oscillator

Consider as depicted in Fig. l.l the simplest possible case: a particle of mass m supported by a horizontal frictionless surface and subjected to a restoring force supplied by a massless spring of force constant K. If x is the displacement of the mass from its equilibrium position, Newton's second law applied to the mass yields

$$
-K x=m \dot{x}
$$

where the x stands for $\frac{d^{2} x}{d t^{2}}$. This differential equation is called the equation of motion of the particle. Our task is to find a solution of this differential equation, since we know that any function $x(t)$ which describes how the particle moves must be a
the equation of motion. Fundamentally find tit a solution of a solution of differential equation is a process of trial and error. There are, however, some general methods of finding solutions of differential equations which are successful in many instances and we will use one of these general methods to find a solution. For convenience let

$$
\begin{equation*}
U_{0}-\sqrt{K_{Y} / Y} \tag{2.1}
\end{equation*}
$$

so that the equation of motion may be written

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2} x=0 \tag{2.2}
\end{equation*}
$$

The general method consists of guessing that there is a solution of the form

$$
\begin{equation*}
\left.X\left(\frac{1}{0}\right)=\right\rangle_{n=0}^{\infty} Q_{n}^{n}=Q_{0}^{n}+0,1+Q^{2}+Q_{3}+{ }^{3}+\ldots \tag{2.3}
\end{equation*}
$$

where $a_{0}, a_{1}, a_{2} \ldots$ are all constants. If such a solution exists then

$$
x(t)=2 a_{2}+6 a_{3} t+12 a_{4} t^{2}+20 a_{5} t^{\circ} \ldots
$$

Substituting this expression along with (2.3) into equation (2.2) one obtains
$\left[2 a_{2}+w_{0}^{2} a_{d}\right]+\left[6 a_{3}+w_{0}^{2} a_{1}\right) t+\left[12 a_{4}+w_{0}^{2} a_{2} t^{2}+\left[20 a_{5}+w_{0}^{2} a_{3}\right] t^{3}+\ldots=0\right.$

For (2.3) to be a solution of (2.2) the above expression must be identically zero, i.e., zero for all possible values of time. This condition would obviously be satisfied if each of the bracketed quantities were equal to zero. If a_{o} and a_{l} are given arbitrary values, then the first bracket can be made zero by choosing

$$
a_{2}=-\frac{w_{w}^{2}}{2} a_{0}
$$

the second bracket by choosing

$$
O_{3}=-\frac{w_{0}}{6} O_{1}
$$

the third bracket by choosing

$$
a_{4}=-\frac{w_{0}^{2}}{12} a_{2}=\frac{w_{0}^{4}}{24} a_{0}
$$

and so on. Thus (2.3) will be a solution of the equation of motion for arbitrarily chosen values of a_{0} and a_{1} provided the other coefficients have the values determined as indicated above. Substituting these values in (2.3) one obtains after rearranging the following solution of the equation of motion

$$
\begin{aligned}
& x(t)=a_{0}\left[1+\frac{\left(\omega_{0} t\right)^{2}}{2!}+\frac{\left(w_{0} t\right)^{4}}{4!}-\frac{\left(w_{0} t\right)^{6}}{6!}+\ldots .\right] \\
& , \quad+\frac{a_{1}}{\omega_{0}}\left[w_{0} t-\frac{1}{3!}\left(w_{0} t\right)^{3}+\frac{1}{5!}\left(w_{0} t\right)^{5}+\ldots\right]
\end{aligned}
$$

The infinite series contained in the first bracket is a Taylor's expansion for $\cos \omega_{0} t$, while that in the second bracket is an expansion for sin $w_{o} t$. The solution can therefore be written in the more familiar form

$$
\begin{equation*}
x(t)=C \cos \omega_{0} t+D \sin \omega_{0} t \tag{2.4}
\end{equation*}
$$

where C and D have been used to replace a_{1} and a_{1} / w_{0} respectively.

In the expression (2.4.), C and D are arbitrary in the sense that (2.4) is a solution of the equation of motion no matter what values are assigned to them. Since the equation of motion is a second order differential equation and since (2.4) has two arbitrary constants, it may be considered the general solution of the differential equation. If the position and velocity of the particle are specified at some instant of time, then these socalled initial conditions determine particular values of C and D and the resulting solution is said to be a particular solution of
the differential equation. For example, $x=3 \cos \omega_{0} t$ is a particular solution of (2.2) corresponding to releasing the mass m from rest at a distance 3 units from its equilibrium position. For any arbitrarily chosen values of C and D it is always possible to find a number A and an angle ϕ such that $C=A \cos \phi$ and $D=-A \sin \phi$. The solution (2.4) can therefore be written in the alternate form

$$
\begin{equation*}
x=A \cos \left(w_{0} t+\phi\right) \tag{2.5}
\end{equation*}
$$

A plot showing the x-coordinate of the particle as a function of time is shown in Fig. 2.2. It should be noted that the motion repeats itself after a time interval

$$
\tau_{0}=2 \pi / \omega_{0}=2 \pi \sqrt{R}
$$

This time interval is called the period of the motion, and its reciprocal

$$
f_{0}=\frac{1}{r_{0}}=\frac{1}{2 m} \sqrt{k / m}
$$

is called the frequency. The quantity ω_{0}
is also loosely referred to as the frequency although the term "angular" frequency would perhaps be more suitable. The magnitude of the largest displacement of the particle from its equilibrium position is called the amplitude of the motion. It corresponds
to the absolute value of A in equation (2.5).

2.2 Complex Form of Solution

One can obtain any number of particular solutions of (2.2) by simply inserting different values of A and ϕ into (2.5). Let $x_{1}(t)$ and $x_{2}(t)$ be two of these particular solutions. Since they are both solutions we must have

$$
x_{1}+w_{0} x_{1}=0
$$

and

$$
Y_{n}+w_{0}^{2} x_{2}-0
$$

If the second of these is multiplied by $i=\sqrt{-1}$ and added to the first, one obtains

$$
\begin{equation*}
\ddot{x}_{1}+i \ddot{x}_{2}+w_{0}^{2}\left(x_{1}+i x_{2}\right)=0 \tag{2.6}
\end{equation*}
$$

Let $\underset{m}{x}(t)$ be defined as follows*

$$
\begin{equation*}
x_{1}\left(x_{1}(t)+i x_{2}(t)\right. \tag{2.7}
\end{equation*}
$$

Functions like $x(t)$ which consist of this simple arrangement of two real functions form a special class ${ }^{\#}$ of complex functions. Differentiation or integration of this special class of functions
*A wavy line underneath a symbol indicates the symbol stands for a complex quantity.
\#All complex functions encountered in this book are of this special class.
is accomplished by treating i as if it were a real constant. Thus

$$
\begin{gathered}
\dot{X}(t)=\dot{x}_{1}(t)+\dot{x}_{2}(t) \\
\dot{x}(t)=\ddot{x}_{1}(t)+\dot{x_{2}}(t) \\
\int X(t) d t=-\dot{x}_{2}(t) d t+i \quad x_{2}(t) d t
\end{gathered}
$$

From these rules, it is possible to write (2.6) as

$$
\begin{equation*}
\ddot{x}+w_{0}^{2} x=0 \tag{2.8}
\end{equation*}
$$

This complex differential equation is identical in form to (2.2). A solution of this complex differential equation is any complex function of the form (2.7) which satisfies it. It can be easily shown if it is not already apparent that the function

$$
\begin{equation*}
X(b)=A \cos \left(\omega_{0}+\theta\right)+i A \sin \left(\omega_{0} t+\theta\right) \tag{2.9a}
\end{equation*}
$$

is a solution of (2.8). Using Euler's theorem one can write this in the form

$$
\begin{equation*}
y(t)=t e^{i \omega_{0} t} \tag{2.9b}
\end{equation*}
$$

where $A=A e^{i \phi}$ is a complex number. Now the real part of (2.9a) or (2.9b) corresponds exactly to (2.5), the general solution of the equation of motion (2.2). For reasons that will become apparent later one, one prefers to work with (2.9b) and to regard it as the equation which describes the motion of the particle. It is, of course, the real part which actually describes the motion of the particle.
2.3 Velocity, Acceleration and Phase Relationships

Equation (2.5) gives the x coordinate of the mass m at any instant. The velocity and acceleration can be obtained by successive differentiations:

$$
\begin{align*}
& \dot{x}=-A \omega_{0} \sin \left(\omega_{0}+\phi\right) \tag{2.10}\\
& \therefore=-A \omega_{0}^{2} \cos \left(\omega_{0} t+\phi\right) \tag{2.11}
\end{align*}
$$

Now x, \dot{x}, and \ddot{x} all vary sinusoidally with the time, and all have precisely the same period. However, no two of the three quantities attain their largest (peak) positive values at exactly the same time. For example x attains its peak positive value, A, at times t^{\prime} such that

$$
w_{0} t^{1}+Q^{\prime} \cdots, 271, H 1, \ldots
$$

At such times, \dot{x} is zero, and \ddot{x} is at its peak negative value. When two sinusoidally varying quantities having the same period attain their positive peak values at different times they are said
to differ in phase, the phase difference ming defined as $2 \pi\left(t_{2} t_{0} / \frac{1}{0}\right.$ where t_{1} is a time at which one of the quantities attains its maximum positive value, t_{2} is the time nearest to t_{l} at which the other quantity attains its maximum positive value, and ${ }^{4}$ is the period. The phase difference, thus defined, is in radians, although it is often expressed in degrees. Since x attains its peak positive value at times $t^{\prime \prime}$ such that

$$
\omega_{0} t^{\prime \prime}+\phi=3 / 2 \pi, 7 / \pi, 112 \pi, \ldots
$$

and \ddot{x} its largest positive value at times $t " '$ such that
we can see that x differs in phase from \dot{x} by $\pi / 2$ radians or 90° and from \ddot{x} by π radians or 180°.

If we use the complex exponential form, (2.9b), of the solution we have*

$$
x=A \cos \left(w_{0}+4\right)+i A \sin \left(w_{0}+\phi\right)=e^{2} w_{0}^{t}
$$

$$
A=-\omega_{0} t \sin \left(\omega_{0} t+\phi\right)+i \omega_{0} A \cos \left(\omega_{0} t+\phi\right)=i \omega_{0} \lambda e^{n \omega_{0} t}=i \omega_{0} x
$$

At any given instant of time $x, \underset{\sim}{x}$, and $\stackrel{\substack{x \\ x}}{ }$ are complex numbers and
*Note that differentiating or integrating the function
is eactly equivalent to differentive or integrating $A e^{\omega_{0} t}$ treating A and in as if they were real constants.
may be represented in the complex plane as shown in Fig. 2.3. Note, that although the position of x is arbitrary, since it depends upon the particular instant of time chosen, once x is drawn, the positions of \dot{x} and \ddot{x} are fixed, since $\dot{X}_{x}=\dot{i} w_{0} X$ and $\ddot{x}=-\omega_{0} x$. Note further that the angle between \dot{x} and x is $\frac{\pi}{2}$ or 90°, precisely the phase difference between \dot{x} and x while that between x and x is 180°, exactly the phase difference between x. and \ddot{x}. It should thus be apparent that the phase relations between the various quantities are more readily deduced from the complex exponential form of the solution than from the real form. In Fig. 2.3. the projections of the vectors x, \dot{x}^{\prime}, and \dot{x} on the real axis are the real parts of these quantities and hence represent, respectively, the values of x, \dot{x}, and \ddot{x} at this particular instant. As time increases the three vectors each rotate counterclockwise with an angular velocity ω_{0}. Because x° is 90° counterclockwise from x it is said to lead x by $\frac{\pi}{2}$ or 90°. * x may be said to lead or lag x by π radions or 180° since one ordinarily speaks of quantities leading or lagging by angles of π radians or less.

2.4 Energy of the Simple Harmonic Oscillator

The total mechanical energy E of the oscillator is the sum of its kinetic and potential energies. The kinetic energy by definition is $m \dot{x}^{2} / 2$. The potential energy of a mass m in a given position may be defined as the work done by the conservative

Fig 2.4
forces (in this case the spring force) as the mass is moved from the given position x to an arbitrarily chosen reference position (chosen for convenience in this case to coincide with the equilibrium position of the particle.) We have then by definition

$$
V(x)=\int_{x}^{0}-k x d x-\frac{1}{2} k x^{2}
$$

for the potential energy. The total energy

$$
E=\frac{1}{2} x^{2}+\frac{1}{2} k x^{2}
$$

Substituting from (2.10) and (2.5) one obtains

$$
\begin{aligned}
E & =\frac{1}{2} m A^{2} \omega_{0}^{2} \operatorname{s-n}^{2}\left(\omega_{0} t+\phi^{2}\right)+\frac{1}{2} K^{2} \cos ^{2}\left(\omega_{0} x^{2}+\phi\right) \\
& =\frac{1}{2} R^{2}=\frac{1}{2} m A^{2} \omega_{0}^{2}
\end{aligned}
$$

The total energy is thus constant as we would expect since the only force acting is a conservative one.

2.5 Damped Harmonic Motion

From experience we have learned that there is no real oscillating system which corresponds exactly to a simple harmonic oscillator. All real oscillating systems are subject to dissipative forces, and if left to themselves (i.e. if no energy is supplied regularly from some outside source) the oscillations will eventually cease. To make
our hypothetical oscillator correspond more closely to a real oscillating system, we need to include a dissipative or damping force. Conventionally one selects a dissipative force which is proportional to the velocity of the particle and is opposite in direction'. This choice results in an equation of motion, the solution of which corresponds reasonably closely to the observed motion of certain real oscillating systems. The equation of motion with this damping force included becomes

$$
11 x^{x}+x^{x}+5 x=0
$$

For convenience let

$$
w_{p}=\sqrt{n} \quad ; \quad ; \quad \pi / a m
$$

so that the equation of motion may be written

$$
\begin{equation*}
\ddot{x}+2 \dot{x} \dot{x}+w_{0} \dot{x}=0 \tag{2.12}
\end{equation*}
$$

It can be readily verified by differentiating and substituting in (2.12) that

$$
\begin{equation*}
x=e^{-\Delta t}\left[A \cos \left(b_{0} t+1\right)\right] \tag{2.13}
\end{equation*}
$$

where

$$
u_{0}=\sqrt{\omega_{0}^{2}-a^{2}}
$$

is a solution of (2.12).* This will be found to be a solution for any arbitrarily chosen values of A and ϕ; hence may be regarded as the general solution of (2.12). The quantity in brackets is exactly the same form as (2.5), the solution of the undamped oscillator. The type of motion represented by (2.13) is shown in Fig. 2.4 where the cosine term and the exponential term are sketched separately and multiplied at each point to obtain the value of x. It is seen that the motion is oscillatory with a gradually decaying amplitude. While strictly speaking this is not a periodic function, we may define the frequency as the number of times per second that the particle passes through its equilibrium position in the positive direction. The frequency is thus

$$
\begin{equation*}
f_{b}=\frac{w_{b}}{2 \pi}=\frac{\sqrt{w_{0}^{2}-a^{2}}}{2 \pi}=\frac{\sqrt{\beta / m} \cdots(P / 2 m)^{2}}{2 \pi} \tag{2.14}
\end{equation*}
$$

If $\mathrm{R} / 2 \mathrm{~m}$ is small compared to K / m, this frequency is only slightly smaller than the frequency of an undamped oscillator of the same mass and spring constant. If $\mathbb{R} / 2 \mathrm{~m}$ is small compared to l , then over any short time interval, say $t_{2}-t_{1}$, the term $A e^{-a z}$ is approximately constant, i.e. the values

$$
A e^{-\alpha k_{1}} \quad A e^{-\alpha t} \quad A e^{-\alpha \frac{k_{1}+t_{0}}{2}}
$$

*There are three types of solutions of equation (2.12) depending on whether $\%$ is greater than, equal to or less than $\%$ The solution of most interest in our present discussion is (2.13) which is the solution when $\omega_{0}>\infty$

14.

are all very nearly the same, and over this time interval the motion can be considered undamped harmonic motion with an amplitude $A e^{-4 t,}$ (or either of the other two values). In this sense we can say that when $\lll l$, the amplitude at any time t can be considered to be A $e^{-4 t}$. It follows from this that $\frac{l}{\alpha}=\frac{2 m}{R}$ is the time for the amplitude to decrease to $\frac{l}{e}$ of its initial value. By measuring this time one can determine \mathbb{G}. If \mathscr{A} is not small compared to 1 one still can determine $\{$ by measuring two successive positive (or negative) peak values x_{n} and $x_{n}+2$ (Fig. 2.5). It may be shown (see problem 2.8) that

$$
\begin{equation*}
\frac{x_{n}}{x_{n+2}}=e^{\frac{2 \pi x}{\omega_{p}}} \tag{2.15}
\end{equation*}
$$

2.6 Driven Harmonic Oscillator

An important type of motion results when a damped harmonic oscillator is subjected to sinusoidally varying force of the form $F_{o} \cos \omega t$ where F_{0} and w are constants. If such a force is applied to a damped oscillator it is observed after sufficient time has elapsed, that the particle is executing a repetitive type motion which has exactly the same frequency ω as that of the driving force. The equation of motion for such an oscillator is

$$
\begin{equation*}
m \ddot{x}+R \dot{x}+K x=F_{0} \cos \cos t \tag{2.16}
\end{equation*}
$$

The general solution of this equation consists of the sum of two parts: the general solution of the homogeneous part, $m \ddot{x}+R \ddot{x}+K \gamma=0$, and any particular solution of the entire equation. The solution of the homogeneous part is exactly that of the damped oscillator which was found in the previous section. The experimental observam tons suggest that a particular solution might be of the form

$$
\begin{equation*}
x=C \sin (\omega t-\theta) \tag{2.17}
\end{equation*}
$$

where C and θ are constants. Differentiating this expression to obtain \dot{x} and \dot{x} and substituting for x, \dot{x}, and \dot{x} in 2.16 one obtains

$$
\cdot-\left(\omega^{2} m \sin (\omega t-\theta)+R\left(\omega^{\prime} \cos (\omega t-\theta)+K C \operatorname{sen}(\omega t-\theta)=F_{0} \cos \omega t\right.\right.
$$

which on expanding $\sin (\omega t-\theta)$ and $\cos (\omega t-\theta)$ and rearranging becomes

$$
\begin{align*}
& {\left[C\left\{\left(\omega^{2} m-K\right) \operatorname{con} \theta+R \omega \cos \theta\right\}-F_{0}\right] \cos \omega t} \\
& +C\left[\left(K-\omega^{2} m\right) \cos \theta+R \omega \operatorname{sut} \theta\right] \sin \omega t=0 \tag{2.18}
\end{align*}
$$

This expression must be identically zero, ie. zero for all possible times if (2.17) is to be a solution of (2.16). It is apparent that if we can make

$$
C\left\{\left(\omega^{2} m-K\right) \operatorname{sen} \theta+R \omega \cos \theta\right\}-F_{0}=0
$$

and

$$
\left(K-\omega^{2} m\right) \cos \theta+R \omega \operatorname{sen} \theta=0
$$

by a proper choice of C and θ, then (2.18) would indeed be identically zero. A choice of θ such that
will make the second of the above equations correct. One can substitute this value of θ in the first equation and solve for that value of C which will make the first equation true. One finds

$$
\left.C=\frac{E}{\Delta} / \omega \right\rvert\,
$$

A particular solution of (2.16) is thus

$$
x=\frac{F_{0} / a \sin (\omega t-\theta)}{\sqrt{P^{2}+(\omega w-k / \omega)^{2}}} \quad \text { where } \quad \theta=\tan ^{-1}\left(\frac{w n \cdots k w}{R}\right)
$$

and the general solution is

$$
x=A e^{-\alpha t} \cos \left(\omega \omega_{\Delta} t+\phi\right)+\frac{\left(F_{0} / \omega\right) \operatorname{sen}(\omega t-\theta)}{\left.\sqrt{R^{2}+(\omega \cos -K / a}\right)^{2}}
$$

where

$$
\begin{aligned}
\alpha=\frac{R}{2 m} \quad \text { and } \quad \omega_{b} & =\sqrt{R / m-(R / 2 m)^{2}} \\
& =\sqrt{\omega_{0}^{2}-\alpha^{2}}
\end{aligned}
$$

The first term of the solution is called the transient part since after a sufficient time has elapsed its contribution to x becomes negligibly small. The second term, the particular solution, is called the steady state solution. Note that after the transient part becomes negligible the motion of the particle is simple harmonic with constant amplitude. The system is then said to be in the steady state and its motion is then. described by (2.20). For convenience let

$$
\begin{equation*}
Z_{m}=\sqrt{k^{2}+(\omega m-k / \omega)^{2}} \tag{2.21}
\end{equation*}
$$

so that one may write for the steady state

$$
\begin{align*}
& x=\frac{F_{0}}{\omega Z_{m}} \operatorname{an}(\omega t-\theta) \\
& \therefore=\frac{F_{0}}{Z_{m}} \cos (\omega t-\theta) \tag{2.22}\\
& x=-\frac{Z_{m}}{x} \sin (\omega ;-\theta)
\end{align*}
$$

We note that x, \dot{x}, \ddot{x}, and the driving force $F_{o} \cos \omega t$ all vary harmonically with the time, and that all have the same frequency and period, but that in general no two of these quantities are in phase. It should be apparent that x and ${ }^{\circ i} x$ differ in phase by 180° and that the driving force $F \cos \omega t$ and x differ in phase by θ. A more complete discussion of the phase relationships will be deferred until a complex solution of (2.16) is developed, since as pointed out earlier, phase relationships are then much more readily apparent.

2.7 Mechanical Resonance

Let us now calculate the rate at which the driving force does work or supplies energy to our driven oscillator in the steady state condition. Recalling that the work done by a force. \vec{F} in an infinitesimal displacement $\overrightarrow{d s}$ is by definition $d W=\vec{F} \cdot \overrightarrow{d s}$, the rate at which work is being done by the force is $\frac{d W}{d t}=\vec{F} \cdot \frac{\overrightarrow{d s}}{d t}=\vec{F} \cdot \vec{V}$ where \vec{V} is the velocity. The rate at which the driving force is supplying energy at a given time is thus

$$
\frac{d W}{d t}=\left(F_{0} \cos \omega t\right) \dot{x}=\frac{F_{0}^{2}}{Z_{m}} \cos \theta t \operatorname{con}(\omega t-0)
$$

The average rate at which this force supplies energy, the average being taken over one cycle, is the work done by this force during one cycle, divided by the time required for one cycle, i.e., divided by the period : he have then

$$
\begin{aligned}
& P_{A_{Q^{\prime}}}=\left(\frac{d \omega}{d t}\right)_{a_{v}}=\frac{1}{T} \int_{0}^{T} \frac{F_{0}^{2}}{z_{n-1}} \cos \omega t \cos (\omega t-\theta) d t . \\
& =\frac{1}{T} \frac{F_{n}^{2}}{Z_{n}} \int_{0}^{T} \cos \omega x^{t}[\cos \hat{t} t \cos \theta+\tan \omega t \sin \theta] d t \\
& =\frac{F_{0}^{2}}{z_{n} T}\left\{\frac{\cos \theta}{\omega}\left[\frac{\omega}{2}+\frac{1}{4} \sin 2 \omega\right]_{0}^{n}+\frac{\sin \theta}{\omega}\left[\frac{\sin ^{2} \omega t}{2}\right]_{0}^{T}\right\} \\
& =\frac{r_{0}^{2} \cos \theta}{2 Z_{m}}
\end{aligned}
$$

Substituting for $\cos \theta$ from (2.19) and for Z_{m} from (2.21) this may be written as

$$
\begin{equation*}
P_{n a v}=\frac{F_{0}^{2} R}{2\left[R^{2}+(u m-K / w)^{2}\right]} \tag{2.23}
\end{equation*}
$$

If the angular frequency w of the driving force is varied, keeping the amplitude, F_{o}, of the driving force constant, then $P_{\text {iav }}$ will vary since it depends on W. A plot of $P_{\text {iav. }}$ as a function of W, under the condition of constant F_{0}, is shown in Fig. 2.6. This curve attains a maximum when $W=W_{r}=\sqrt{K / m}$ as should be evident from an examination of (2.23). This angular frequency and the corresponding actual frequency at which average input power $P_{\text {iav }}$

$$
\begin{equation*}
f_{n}=\frac{\omega_{n}}{2 n}=\frac{1}{2 n} \sqrt{K / m} . \tag{2.24}
\end{equation*}
$$

The resonant frequency and the shape of the $P_{\text {iav }}$ versus frequency curve are two important characteristics of an oscillating system. As a quantitative measure of the shape of the curve, one uses a quantity called the Q of the system which is defined by

$$
\begin{equation*}
Q)=\frac{w_{2}}{w_{i}-w_{i}} \tag{2.25}
\end{equation*}
$$

where w_{1} and w_{2} are the two angular frequencies at which the input power $P_{i a v}$ is $1 / 2$ of the input power at resonance. These two frequencies are indicated in Fig. 2.6. If they lie close to each other then Q is large and $P_{\text {iav }}$ decreases rapidly on either side of the resonant frequency, and the resonance is said to be sharp. If W_{1} and W_{2} are widely spaced then Q is small and $P_{i a v}$ is approximately constant over a range of frequencies in the neighborhood of the resonant frequency. When this is true the resonance is said to be broad.

One can determine which parameters of the oscillating system determine its Q by calculating w_{1} and w_{2} as follows. If ω^{\prime} is one of the angular frequencies for which $P_{\text {iav }}=1 / 2 P_{\text {iav }} \max$ we have

$$
\begin{equation*}
\frac{r_{0} K}{R\left[R^{2}+\left(\omega^{\prime} m-K / \omega^{\prime}\right)^{2}\right.}=\frac{1}{2}\left|\frac{F_{0}}{2 R}\right| \tag{2.26}
\end{equation*}
$$

Rearranging and simplifying one obtains

$$
\omega^{\prime} m-K / \omega^{\prime}= \pm R
$$

This equation gives rise to two quadratic equations, one for +R and 'one for - R. Writing both of these down side by side and solving each for w^{\prime} we have:

$$
\begin{array}{ll}
\omega^{\prime} m+R()^{\prime}-k_{3}=0 & w^{\prime 2} m-R \omega^{\prime} \cdots K=0 \\
\omega^{\prime}=-\frac{R}{3 m}+\sqrt{(B / 2 m)^{2}+K / m} & \omega^{\prime}=\frac{R}{2 m} \pm \sqrt{(R / 2 m)^{2}+(k / \omega)}
\end{array}
$$

There are thus four values of w^{\prime} which satisfy (2.26). However, we note that two of these values are negative and have no physical meaning. Setting the larger of the positive values equal to ω_{2} and the smaller one to w, yields

$$
\begin{aligned}
& w_{2}=\frac{R}{2 m}+\sqrt{(R / 2 m)^{2}+K / m} \\
& (u)_{1}=-\frac{R}{2 m}+\sqrt{(R / 2 m)^{2}+K / m}
\end{aligned}
$$

Substituting these values in (2.25) gives

$$
\begin{equation*}
Q=\frac{W_{2} m}{R}=\frac{1}{R} \sqrt{K m} \tag{2.27}
\end{equation*}
$$

Rearranging and simplifying one obtains

$$
\omega^{\prime} m-k / \omega^{\prime}= \pm R
$$

This equation gives rise to two quadratic equations, one for $+R$ and 'one for -R. Writing both of these down side by side and solving each for $\boldsymbol{\omega}^{\prime}$ we have:

$$
\begin{array}{ll}
w^{\prime} m+R()^{\prime}-k^{\prime}=0 & w^{\prime 2} m-R \omega^{\prime}-K=0 \\
\omega^{\prime}=-\frac{R}{2 m}+\sqrt{(R / 2 m)^{2}+R / \omega} & \omega^{\prime}=\frac{R}{2 m} \pm \sqrt{(R / 2 m)^{2}+(k / \omega)}
\end{array}
$$

There are thus four values of ω^{\prime} which satisfy (2.26). However, we note that two of these values are negative and have no physical meaning. Setting the larger of the positive values equal to w_{2} and the smaller one to w, yields

$$
\begin{aligned}
& \omega_{2}=\frac{R}{2 m}+\sqrt{(R / 2 m)^{2}+K / m} \\
& (1)_{1}=-\frac{R}{2 m}+\sqrt{(R / 2 m)^{2}+K / m}
\end{aligned}
$$

Substituting these values in (2.25) gives

$$
\begin{equation*}
Q=\frac{W_{2} m}{R}=\frac{1}{R} \sqrt{k m} \tag{2.27}
\end{equation*}
$$

2.8 Complex Form of Solution of the Driven Oscillator

In section 7 we found that the steady state solution of the equation of motion

$$
\begin{equation*}
1 m x+R x+F x=F_{0} \cos u x \tag{2.28}
\end{equation*}
$$

of a driven harmonic oscillator was

$$
\begin{aligned}
& x=\frac{F_{0}}{102} \sin (b+\theta) \\
& \dot{x}=\frac{\Gamma_{0}}{Z_{n}} \cos (1, t-\theta) \\
& \theta=K_{1}+\frac{w_{n}-k / Q}{R} \\
& \text { when } \\
& z_{m}=\sqrt{\left.x^{2}+(m,-4)_{n}\right)}
\end{aligned}
$$

If one is interested only in the steady state solution as is of ten the case, it turns out one can obtain such a solution with less algebra by the following technique. Suppose that a force F_{o} sinwt rather than F coset (this simply means starting to measure time at a different instant) is applied to the oscillator and that y rather than x is used to measure the displacement. The equation of motion in this case would be

$$
\begin{equation*}
m y+R y+k y=F_{0} \sin w t \tag{2.29}
\end{equation*}
$$

If we multiply (2.29) by i and add it to (2.28) we have

$$
\begin{equation*}
m(\ddot{x}+i \ddot{y})+R(\dot{x}+i \dot{y})+K(x+i y)=F_{0}(\cos \omega t+i \operatorname{sen} t) \tag{2.30}
\end{equation*}
$$

which by setting $x=x+i y$ can be written

$$
\begin{equation*}
\operatorname{mix}+R x^{\dot{o}}+k x_{0}=e^{i \omega t} \tag{2.31}
\end{equation*}
$$

If one can find a solution of this complex differential equation of the form

$$
x(x)=x_{1}(x)+x, y(x)
$$

where $x_{1}(t)$ and $y_{l}(t)$ are real functions, it should be apparent that $x_{1}(t)$ would be a solution of (and $y_{l}(t)$ would be a solution of (29 ${ }^{9}$. Now it is readily verified that the complex function

$$
x(t)=A e^{i \omega t}
$$

where

$$
\begin{array}{r}
A=-\frac{A F_{0} / \omega}{R+e(\omega m-k / \omega)} \\
\text { is a solution of }(2.31) . \text { Hence the real part of }
\end{array}
$$

$$
\begin{equation*}
x=-\frac{\lambda\left(t_{0} / \omega\right) e^{a^{\omega t}}}{R+\Delta(u m-K / \omega)} \tag{2.32}
\end{equation*}
$$

must' be a solution of (2.28). If we write the complex number $R+i(\omega m=k / \omega)$ in exponential form we have

Hence

The real part of this is exactly the steady state solution we found earlier. For reasons mentioned earlier we prefer to regard (2.32) as the steady state solution of the driven harmonic oscillator, and to regard $F_{0} e^{i m t}$ as the driving force. Taking the real part of these complex functions will always give us the actual solution and driving force. If we let

$$
\begin{equation*}
Z_{m}=R+l(\omega m-k / w) \tag{2.33}
\end{equation*}
$$

we can write

$$
x=-i \frac{F / \omega}{Z_{m}} e^{i \omega t}
$$

$$
\begin{equation*}
\dot{x}=\frac{F_{0}}{z_{m}} e^{i w t}=i w x \tag{2.34}
\end{equation*}
$$

$$
\ddot{x}=x \frac{F_{0}}{x_{0}} e^{1 w t}=-w_{0}^{2} x
$$

The real parts of x, \dot{x} and \dot{x} correspond exactly to the expression for x, 莫 and given in (instant of time, one represents $x, \underset{x}{x}, \ddot{x}$ in the complex plane one obtains a figure like that shown in Fig. 2.7. Although the position of x is arbitrary since it depends on the particular instant of time chosen, once x is drawn, the positions of \dot{x} and \ddot{x} are fixed from the relation $\dot{x}=i u x$ and $\ddot{x}=-\omega_{e}^{2} x$. Note again that the angle between any two of the quantities is exactly equal to the difference in phase between the corresponding real quantities. Moreover, we note that the (complex) driving force $F_{o} e^{\text {at }}$ is related at every instant of time to \dot{x} by the second of equations (2.34). This may be written

$$
F_{0} e^{n}=z_{n} \dot{x}^{n} x=[R+1(\omega-k / \omega)] \dot{x}=R \dot{x}+k\left(\omega n-\frac{k}{w}\right) \dot{x}
$$

152.7

If at any instant of time one represents $\underset{\sim}{x}$ in the complex plane, then the quantities $R \dot{x}$ and $\left.\dot{A}(\omega)=\frac{K}{u}\right) \dot{x}$ and their sum are fixed. as indicated in Fig. 2.7b. From this figure it is easily seen that the angle between the vector representing $F_{o} e^{i n t}$ and that representing \dot{x} is the angle whose tangent is $(\omega \mathrm{m}=\mathrm{K} / \omega) / \mathrm{R}$. which is the angle θ defined earlier and is exactly the difference in phase between the driving force $F \cos w$ t and the velocity $x=\frac{F_{0}}{Z_{m}} \cos (\omega t-\theta)$. In drawing the figure it was assumed that $\omega m>\frac{K}{w}$. For this case the driving force "leads" the velocity by the angle θ.

Because of the relatively greater ease of manipulation and the fact that the phase relations are more readily apparent, one usually prefers to do algebraic manipulations with the quantities x, \dot{x}, \ddot{x} and $F_{o} e^{\text {fut }}$ remembering that by taking the real parts of these quantities he can obtain x, \ddot{x}, \dot{x} and the real driving force $F_{0} \cos \mu t$. The technique of working with complex rather than real solutions is almost universally used not only in the study of vibration and sound, but also in the study of electric circuits. It has the rather considerable advantage, not really brought out in the simple examples illustrated, of reducing the solution of a set of differential equations to the solution of a set of algebraic equations involving complex quantities. It should be pointed out that in dealing with energy and power one must use real quantities. In calculating, for example, the average power input as we did in section 7 , one must use real values for the force and for the velocity.

$$
m \ddot{x}+R \dot{x}+k \dot{x}=F_{0} \operatorname{tos} \quad, \quad F_{0} e^{i n t}=k(t) .
$$

2.9 Mechanical Impedance

For a driven damped simple harmonic oscillator, the quantities x, \dot{x}, \ddot{x} and $F_{i} e^{w \prime}$ are referred to respectively as the complex acceleration, complex velocity, complex displacement, and complex driving force. The ratio of the complex driving force to the comflex, velocity is called the mechanical impedance Z_{m} of the system. Thus

$$
\left.7_{m}=\frac{F_{0} e^{i n t}}{x_{m}}=R+4 m-k / m\right)
$$

Note that the absolute value of Z_{m} is

$$
\left|x_{m}\right|=x_{m}=\sqrt{K^{2}+(\omega m-k / w)^{2}}
$$

a quantity we had defined earlier. The mechanical impedance Z_{m}, the driving force $F_{i} e^{\prime \mu t}$ and the velocity \dot{x} play roles in a mechanical system that are analogous to the roles played by the electrical impedance, the applied emf, and the current in an electrical circuit.
2.10 Stiffness, Resistance, and Mass Controlled Oscillators

For a given driven harmonic oscillator it may happen that over a certain range of $\$$ frequencies one of the three terms R, wm, or K / w is much larger than the other two. At frequencies considerably below resonance, for example, $\mathrm{K} /$. may be much larger than R or $\omega \mathrm{m}$. If so then $Z_{m} \cong K / \omega$ and

$$
x \approx \frac{5}{E} \operatorname{an}(w t-\theta)
$$

Such an oscillator is said to be stiffness controlled over this range of frequencies. Note that it has the important property that the displacement amplitude F_{0} / K is independent of frequency. Similarly, for frequencies near the resonant frequency of the system, R may be large compared to ($\omega \mathrm{m}-\mathrm{K} / \omega$) so that over this range $Z_{m} \subseteq R$ and

$$
\begin{aligned}
& x=\frac{\beta}{u R} \operatorname{son}(\omega t-\theta) \\
& \therefore=\frac{E}{R} \operatorname{cog}(\theta t \theta)
\end{aligned}
$$

Such an oscillator is said to be resistance controlled. Note, that although the displacement amplitude is not independent of frequency, the velocity amplitude is. Finally if $\omega m \gg \frac{K}{\omega}$ or R then $Z_{\mathrm{m}} \cong \omega \mathrm{m}$ and such an oscillator is said to be mass controlled. A mass controlled oscillator has the sometimes desirable property that the acceleration amplitude is independent of frequency.

2.11 The Loudspeaker as a Driven Damped Oscillator

As a practical and sometimes useful example of a system that behaves to a first approximation as a driven damped harmonic oscillator consider the familiar permanent magnet loudspeaker. Two
sketches showing the essential features of the loudspeaker are shown in Fig. 2.8. Fastened securely to the center of the speaker cone is a short hollow plastic cylinder on which is wound several turns of copper wire, constituting that is called the voice coil. The speaker cone is flexible allowing some motion of the voice coil along the axis of the cone but subjecting the coil to restoring forces whenever it is moved in either direction from its equilibrium position. The voice coil is positioned so that it lies in a magnetic field set up by a permanent magnet and a soft iron frame. A current I flowing in the voice coil gives rise to a force on the coil, and for a magnetic field Q and a coil length Q the force is simply since the field is arranged so that it intersects each element of the coil at right angles. A current $I=I_{o} \cos u t$ will thus pro.. duce a driving force $B I_{0} \cos w t$. Motion of the voice coil and speaker cone results in mechanical energy being lost from the system in the form of sound which is radiated and heat which is generated in the cone. In representing the speaker as a driven oscillator we associate these losses with a damping force proportional to the velocity of the voice coil. Thus we write for the equation of motion of the voice coil of the speaker

$$
m \ddot{y}+R \dot{y}+k y=B x, \operatorname{cow}
$$

where y represents the displacement of the voice coil from its equilibrium position. To get better agreement between the predictions of this equation and the actual motion of the voice coil the m
should include not only the mass of the voice coil but also some fraction of the speaker cone. The K in the equation depends on the stiffness of the speaker cone. The steady state motion of the voice coil will be given by the real part of
. 1
where

$$
z_{m}: R_{1}+\left(w m-k_{m}\right)
$$

is the mechanical impedance of the speaker.

Chapter III

1. Introduction

Waves and wave motion play an important role not only in the classical areas of acoustics and optics, but also in many areas of modern physics, as the name wave mechanics would suggest. To write down a meaningful definition of a wave is somewhat difficult. However, some concept of what is meant by a wave may be obtained by observing visually the behavior of the system sketched in Fig. 3-1, consisting of a number of blocks of wood fastened at regular intervals to wire which is suspended from the ceiling. If the lowest block A is given a sudden twist it will be observed that this motion will be transferred to the block immediately above it, causing it to twist, and that the motion will be transmitted in turn to the next block and so on. We describe this motion by saying that a wave being is ${ }_{\wedge}$ propagated along the wire. When the motion which is being transferred to successive blocks reaches the block which is fastened to the ceiling, a transfer cannot take place, and one observes that the motion is impressed a second time on the block immediately below the fixed one and subsequently transmitted in turn to each block below it. We say that the wave has been reflected. When the wave reaches the lowest block, a second reflection takes place and the whole process is repeated. Eventually the motion of the block ceases, the initial energy being dissipated in internal friction in the wire.

Fig 3,1

In the example above, several characteristic's of wave motion may be noted. First there is a definite time required for the motion given to A to be transmitted to any given block above A, i.e., the wave is propagated with a finite velocity. Second, although energy is transferred from block to block along the wire there is no actual transport of mass along the wire. Third, when the wave reaches a point such as D or A where the properties of the medium change, a reflection of the wave takes place.

If block A, instead of being given a sudden twist, is given a periodic motion by twisting it back and forth by hand, one observes after a short time has elapsed that all of the blocks are in motion, oscillating about their equilibrium positions. When this steady state has been established, one no longer can observe that waves are being propagated up and down the wire. All one observes is the regular motion of the individual blocks. Nonetheless, it is reasonable to suppose that waves are still being propagated and that the motions of the individual blocks are produced by these waves.

Although the above system of blocks on a wire is admirably suited for demonstrating waves, it is not the simplest system to analyze mathematically. We consequently will begin by studying transverse waves on a string.

Fig 3.2

Fig 3.3

It is readily observed that a string fastened between two points and under some tension will vibrate iff pulled aside and then released. The wave nature of this motion is not readily apparent; all that we can observe is that each small piece of the string oscillates back and forth in some regular fashion. Nonetheless, as we shall see, the oscillations are readily explained in terms of waves travelling back and forth along the string. First we need to see how one describes the motion of such a string mathematically. Let us assume that the motion is confined to a plane which we will take as the $x-y$ plane. In Fig. 3.2 let the solid line represent the configuration of the string at some instant of time tl. Using the coordinate system indicated in the figure, we can describe the configuration of the string at time t_{l} by some function $y_{l}(x)$ which if plotted would coincide exactly with the position of the string at every point. At another time t_{2}, the string would have a different configuration and thus would require a different function $y_{2}(x)$ to describe it. To completely describe the motion of the string, i.e., to specify its configuration at every instant of time thus requires a large number of functions of x, one for each instant of time. This entire set of functions can be represented formally as $y(x, t)$, each individual function of x being obtained by inserting the corresponding value of time. An equally good way of describing the motion is to specify how each point of the string moves in time. This requires a large number of functions
of time, one for each point of the string. This complete set of functions can also be represented by $y(x, t)$, the function of time for a given point being obtained by inserting the x coordinate of that point. Thus the motion of a string vibrating in a plane can always be described by some function $y(x, t)$.

We will now show that any function $y(x, t)$ which describes the motion of a string must meet a certain requirement; it must be a solution of a partial differential equation called the wave equation. This condition comes about by requiring the motion of each small piece of the string be governed by Newton's second law. Referring again to Fig. 3.2 let us isolate for consideration a small piece of string of length ΔL. Fig. 3.3 shows this small piece considerably enlarged and shows the two forces $T{ }^{l}$ and T exerted on its two ends by the other portions of the string** Newton's second law applied to this small piece, assuming it

[^9]moves only in a vertical direction yields the following two equations.
\[

$$
\begin{aligned}
& T^{\prime} \cos \alpha^{\prime}-T \cos \varphi=0 \\
& T^{\prime} \sin 4^{\prime}-T \operatorname{sen} \alpha=m a_{y}
\end{aligned}
$$
\]

Here m is the mass of the piece and ag stands for the y -component of the acceleration. If the amplitude of vibration of the string at any point is small then the angles $\&$ and $\&^{\prime}$ will be small no matter which piece of string or which instant of time we choose. If \propto and α^{\prime} are sufficiently small then to a good approximation

$$
\begin{array}{ll}
\cos \alpha=1 & \cos \alpha^{\prime}=1 \\
\operatorname{sen} \alpha=\tan \alpha & \operatorname{sen} \alpha^{\prime}=\tan \alpha^{\prime}
\end{array}
$$

If we make these approximations we see that $T=T^{l}$ and the y equation of motion can be written as

$$
\begin{equation*}
T[\tan x-\tan *]=m a_{y} \tag{3.1}
\end{equation*}
$$

If ρ is the mass per unit length of the string, then $\rho \Delta x$ may be written for m. Also if $y(x, t)$ represents the configuration at the instant of time t we are considering

$$
\begin{aligned}
\tan a^{\prime}=\left.\frac{\partial y(x, t)}{\partial x}\right|_{x+\Delta x, t} & =f_{x}(x+\Delta x, t) \\
\tan x=\left.\frac{\partial y(x, t)}{\partial x}\right|_{x, t} & =f_{x}(x, t)
\end{aligned}
$$

Since $y(x, t)$ also specifies how that point of the string a distance x from the end moves in time, the acceleration of the midpoint of the small piece of string under consideration is

$$
a_{y}=\left.\frac{\partial^{2} y(x, k)}{\partial t^{2}}\right|_{x+\frac{\Delta x}{2} ; t}=f_{x t}\left(x+\frac{\Delta x}{2}, t\right)
$$

We can now write (3.1) as

$$
T\left[f_{x}(x+\Delta x, t)-f_{x}(x, k)\right]=p \Delta x f_{A t}\left(x+\frac{\Delta x}{2}, t\right)
$$

Dividing by.: Δx and passing to the limit as $\Delta x \rightarrow 0$ we have from the definition of a derivative

$$
T\left[f_{x x}(x, y)\right]=\rho f_{t y}(x, y)
$$

or in slightly different notation

$$
\begin{equation*}
c^{2}-\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial x^{2}} \quad c=\sqrt{T / \rho} \tag{3.2}
\end{equation*}
$$

This is the wave equation for waves on strings. Any function $y(x, t)$
static) which is to descrive the motion of a string (subject of course to the restrictions and approximations mentioned above) must satisfy this equation. The quantity T in the above equations is called the tension in the string and is equal to the magnitude of the force any given segment of the string exerts on any neighboring segment.

3. Solutions of the wave equation.

Any function $y(x, t)$ which satisfies the partial differential equation (3.2) is said to be a solution of it. Fundamentally, one finds solutions by trial and error, although as we shall see presently, there are general methods of finding solutions which work in many instances. Before looking for any solution we note that (3.2) has the following important property: if one can find two different functions, say $y_{1}(x, t)$ and $y_{2}(x, t)$ both of which satisfy (3.2) then their sum or more generally, the function

$$
\begin{equation*}
y(x, x)=a y_{1}(x, t)+b y_{2}(x, t) \tag{3.3}
\end{equation*}
$$

where a and b are arbitrary constants, is also a solution. This so. called super portion ssomertu
2 easily proved as follows. Substituting (3.3) into (3.2) one obtains

$$
c^{2}\left[a \frac{\partial^{2} y_{1}}{\partial x^{2}}+b \frac{\partial^{2} y_{2}}{\partial x^{2}}\right]=a \cdot \frac{\partial^{2} y_{1}}{\partial t^{2}}+b \frac{\partial^{2} y_{2}}{\partial x^{2}}
$$

which on rearranging becomes

$$
a\left[c^{2} \frac{\partial^{2} y_{1}}{\partial x^{2}}-\frac{\partial^{2} y_{1}}{\partial x^{2}}\right]+b\left[c^{2} \frac{\partial^{2} y_{2}}{\partial x^{2}}-\frac{\partial^{2} y_{1}}{\partial x^{2}}\right]=0
$$

Since y_{1} and y_{2} both are solutions, the terms in brackets are zero and hence $y=a y_{1}+y_{2}$ is also a solution since it satisfies the differential equation.

It is easy to show that any function $y(u)$ where $u=x-c t$ satisfies the wave equation (3.2). We have, re me using the fundtimon of a function rule,

$$
\begin{align*}
& \frac{\partial y}{\partial x}=\frac{\partial u}{\partial u} \frac{\partial u}{\partial x}=\frac{\partial y}{\partial u}(1) \\
& \frac{\partial^{2} u}{\partial x^{2}}=\left[\frac{\partial}{\partial u}\left(\frac{\partial y}{\partial u}\right)\right] \frac{\partial u}{\partial x}=\frac{\partial^{2} y}{\partial u^{2}}(1) \tag{3,4}\\
& \frac{\partial y}{\partial t}=\frac{\partial u}{\partial u}\left(\frac{\partial u}{\partial t}\right)=\frac{\partial y}{\partial u}(-c) \\
& \frac{\partial^{2} y}{\partial t^{2}}=\left\{\frac{\partial}{\partial u}\left(c \frac{\partial u}{\partial u}\right)\right\} \frac{\partial u}{\partial t}=\frac{\partial^{2} y}{\partial u^{2}} c^{2} \tag{3.5}
\end{align*}
$$

Substituting $y(u)$ into (3.2) using (3.4) and (3.5) yields an identity proving $y(u)$ is a solution. It should now be evident that any function $y(v)$ where $v=x+c t a l s o w i l l$ satisfy the wave equation, and it should be evident that setting $u=c t-x$ or $v=c t+x$ would not invalidate the argument. By virtue of the super orsitios norustur Ma nd other function $y_{2}(v)^{\prime}$ is also a solution. We assert without proof

$$
\begin{equation*}
y(x, t)=y_{1}(x-c t)+y_{2}(x+c t) \tag{3.6}
\end{equation*}
$$

is the general solution of the wave equation in the sense that any solution we may find of (3.2) can always be derived from (3.6) by writing some specific function for y_{1} or y_{2}. The function $y(x, t)$ which describes the motion of a vibrating string thus must be of the form (3.6).

Any function $y(x-c t)$ represents a "disturbance" moving to the right with a velocity c. This may be seen from the following

(b)

Fig 3, it

considerations. At time $t=0, y(x-c t)$ becomes simply $y(x)$, i.e., some function of x. Suppose, for example, this function when plotted gives the curve shown in Fig. 3.4(a). At another time say $t_{l}, y(x-c t)$ becomes some other function of x, namely $y\left(x-c t_{l}\right)=y\left(x-x_{1}\right)$ where $x_{1}=c t_{1}$. But we know from analytical geometry that $y\left(x-x_{1}\right)$ has the same form as $y(x)$ except that each point is displaced a distance x_{1} to the right. Hence $\left.y(x-c t)^{\prime}\right)$ must look as in Fig. 3.4(b). In time th the "disturbance" has moved a distance x_{l} to the right, hence must be moving with a speed $c=x_{1} / t$. Thus the quantity $c=\sqrt{T / \rho}$ must represent the speed with which a disturbance or wave moves along a string. By a similar argument one can show that any function $y(x+c t)$ reprosent a disturbance propagating to the left with a speed c.
4. Harmonic solutions of the wave equation.
(Although at this point we already know the general solution of the wave equation (3.2), let us imagine this were not the case and we were attempting to find a solution. A very useful technique in finding solutions is to "separate the variables", which in the case of equation (3.2) means to look for solutions of the form

$$
\begin{equation*}
y(x, t)=X(x) H(t) \tag{3.7}
\end{equation*}
$$

where $X(x)$ is a function of x alone, and $H(t)$ is a function of t only. Substituting (3.7) into (3.2) one obtains after rearranging

$$
\begin{equation*}
c^{2} \frac{1}{X} \frac{d^{2} X}{d x^{2}}=\frac{1}{H} \frac{d^{2} H}{d t^{2}} \tag{3.8}
\end{equation*}
$$

If (3.7) is a solution of the wave equation then condition (3.8) must hold, and moreover it must hold at any point of the string for all times, and at any time for all points of the string. Since the left hand side of (3.8), being a function only of x, does n't change with time, the right hand side of (3.8) must be the same for all times if the two sides are to be always equal. Hence both sides of (3.8) must equal a constant. Calling this constant $-\omega^{2}$ we obtain from (3.8) the following two ordinary differential equations

$$
\left.\begin{array}{rl}
\frac{d^{2} X}{d x^{2}} & =-\left(\omega^{2} / c^{2}\right) X \tag{3.9}\\
\frac{d^{2} H}{d x^{2}} & =-\omega^{2} H
\end{array}\right\}
$$

If solutions of these ordinary differential equations exist then $X(x) H(t)$ will be a solution of the wave equation. Both of these equations have the same form as the equation of motion of a simple harmonic oscillator. Their general solutions are therefore

$$
\begin{aligned}
& Z(x)=a \cos (\omega / c) x+b \sin (\omega / c) x \\
& H(x)=d \cos \omega t+e \sin \omega t
\end{aligned}
$$

where $a, b, d, a n d e$ are arbitrary constants. The solution of the wave equation thus warmest is

$$
\begin{aligned}
y(x, t) & =[a \cos (\omega / c) x+b \sin (\omega / c) x][d \cos \omega t+c \operatorname{sen} \omega t] \\
& =\left[C \cos \frac{\omega}{c} x+A \operatorname{sen} \frac{\omega}{c} x\right] \cos \omega t+\left[D \cos \frac{\omega}{c} x+B \sin \frac{\omega}{c} x\right] \operatorname{sen} \omega t
\end{aligned}
$$

Note that this is a solution of the wave equation'for every positive value of the constant W and for completely arbitrary values of further
the constants A, B, C and D. Note that if such an equation represented the motion of a string then each point of the string would be moving in simple harmonic motion with an angular ferequincy ω. For this reason, solutions of the form (3.10) are called harmonic solutions. It is easy to show (see problem 3.3) that the harmonic solution (3.10) can be expressed in terms of functions whose arguments are $x-c t$ and $x+c t$.

5. Boundary conditions, eigen frequencies.

We have just seen that any function $y(x, t)$ which is to describe the motion of a string must satisfy the wave equation. There is a second restriction. If the string is tied down at both ends as in Fig. 3.1 then obviously the two ends of the string never move. If $y(x, t)$ is to correctly describe the string then

$$
\begin{aligned}
& y(0, x)=0 \\
& y(1, x)=0
\end{aligned}
$$

where L is the length of the string. These, for obvious reasons, are called boundary conditions.

Now (3.10) is a solution of the wave equation. Does it satisfy the boundary conditions? It may be seen by inspection that for $x=0$, (3.10) will be zero for all values of t if C and D are taken equal to zero, i.e., the harmonic solution

$$
\begin{equation*}
y(x, t)=\operatorname{sen} \frac{w}{c} x[A \cos \omega t+B \operatorname{sen} t] \tag{3.11}
\end{equation*}
$$

does satisfy the first boundary condition. This will also satisfy the second boundary condition if

$$
\frac{w}{c} L=n \pi \quad n=1,2,3 \ldots
$$

or

$$
\begin{equation*}
\omega=n \frac{\pi c}{L} \tag{3,12}
\end{equation*}
$$

Thus harmonic solutions of the wave equation satisfy the boundary conditions only for these special values of ω. These special values of ω and the corresponding actual frequencies, $f=\frac{\omega}{2 \pi}$, are referred to as characteristic or eigen frequencies. For each eigen frequency there is a function of the form (3.ll) which satisfies both the wave equation and the boundary conditions. These are referred to as characteristic or eigen functions. We list some for reference.

$$
\begin{align*}
& y_{1}(x, t)=\sin \frac{\pi}{L} x\left[A_{1} \cos \frac{\pi c}{L} t+B_{1} \operatorname{sen} \frac{\pi c}{L} t\right] \\
& y_{2}(x, t)=\operatorname{sen} \frac{2 \pi}{L} x\left[A_{2} \cos \frac{2 \pi c}{L} t+B_{2} \operatorname{sen} \frac{2 \pi c}{L} t\right] \\
& \vdots \tag{3,13}\\
& \vdots \\
& y_{n}(x, t)=\operatorname{sen} \frac{n \pi}{L} x\left[A_{n} \cos \frac{n \pi c}{L} t+B_{n} \sin \frac{n \pi c}{L} x\right]
\end{align*}
$$

If the string is vibrating so that the first of these, $y_{1}(x, t)$, describes its motion, then the string is said to be vibrating in its first or fundamental mode. The corresponding frequency
$\mathcal{S}=W / 2 \pi=C / 2 L$ is called the fundamental frequency. It is the smallest of the allowed frequencies. If the string is vibrating so that its motion is described by (3.13) then it is said to be vibrating in its nth characteristic mode. Note that the ferequincy f_{n} corresponding to the nth mode of vibration is n times the fundamental frequency. When the characteristic frequencies of a vibrating system are all integral multiples of the fundamental frequency, they are called harmonics, f_{1} being the first harmonic, $f_{2}=2 f_{1}$ the second harmonic: and so on.

Suppose a string is vibrating in its nth characteristic mode. What is the general appearance of the string? Using a little trigonometry, equation (3.13) which describes the nth mode may be written

$$
\begin{equation*}
y_{n}(x, t)=\left[C_{n} \sin \frac{n \pi}{4} x\right] \cos \left(u_{n} t+\phi_{n}\right) \tag{3.14}
\end{equation*}
$$

where $\omega_{n}=\frac{n \pi c}{L}$ and C_{n} and ϕ_{n} are constants related to A_{n} and B_{n}. If we consider some particular point of the string corresponding to a particular value of x, say x_{1}, then the quantity in brackets becomes merely a fixed number, the absolute value of which reprosent the amplitude of the simple harmonic motion of the particular piece of string at that point. This amplitude is, of course, zero at $x=0$ and $x=L$ and may also be zero at intermediate points; in fact it will be zero for all values of x lying between 0 and L for which

$$
\frac{n \pi}{L} x=\pi, 2 \pi, 3 \pi, \ldots .
$$

For example, for the 4 th mode, for which $n=4$, x is zero at points for which

$$
x=\frac{L}{4}, \frac{L}{2}, \frac{3}{4} L
$$

as well as at 0 and L. Points for which the amplitude of the motion is zero are called nodes. At points midway between the nodes the amplitude of the vibration is a maximum. Such points are referred to as antinodes. Because an object which is vibrating with simple harmonic motion spends much more time near the end points of its motion (the velocity being smaller there) than it does at its midpoint, an object vibrating with a frequency of 30 cps or greater appears to be an observer to be two approximately stationary objects, one at each end point. Thus, a string vibrating in say its fourth characteristic mode appears as shown in Fig. 3.5. Because the pattern appears to be stationary it is referred to as a standing wave.

6. Initial conditions, general solution.

We have just shown that there are harmonic solutions of the wave equation of the form (3.13) which satisfy the boundary conditions, there being one such solution for each value of ω given by (3.12). It is possible for a string to be vibrating so that its motion is described by one of these characteristic functions. The cases for which this is true are very special and require that the string be set in motion in a special way. We inquire if it is possible to find a solution which will describe the motion of a string started in an proprestar
arbitrary way. By virtue of the superposition pron the characteristic modes,

$$
\begin{equation*}
y(x, t)=\sum_{n=1}^{\infty} \operatorname{sen} \frac{n \pi}{L} x\left[A_{n} \cos \frac{n \pi}{L} t+B_{n} \operatorname{sen} \frac{n \pi}{L} t\right] \tag{3.15}
\end{equation*}
$$

is itself a solution of the wave equation, and obviously satisfies the boundary conditions. We argue that if the $A_{n}{ }^{\prime} s$ and $B_{n}{ }^{\prime} s$ in (3.15)
can be chosen so that this sum correctly describes the motion of a string at a given instant of time then it will correctly describe. the motion for all subsequent times. Let the given instant of time be thO and let the motion of the string at this instant be described by the two functions $y_{0}(x)$ and $v_{0}(x)$, the first function specifying the position of each element of the string at thO and the second the velocity of each element. If (3.15) correctly describes the string at $t=0$ we must have*

$$
\begin{align*}
y_{0}(x) & =\sum_{n=1}^{\infty} A_{n} \operatorname{sen} \frac{n \pi}{L} x \tag{3,16}\\
& \therefore \sum_{n} \operatorname{sen} \frac{n \pi}{L} x \tag{3.17}\\
v_{0}(x) & =\frac{\pi C}{L} \sum_{n=1}^{\infty} B_{n}
\end{align*}
$$

The required values of the $A_{n}{ }^{\prime} s$ to satisfy (3.16) can be determined by multiplying both sides of (3.16) by $\sin \left(\frac{m \pi}{L} . x\right) d x$, where m is some integer, and integrating from 0 to L. All of the terms on the right except the term for which man will then be found to vanish (see prob. 3.5) yielding

$$
\int_{0}^{L} y_{0}(x) \sin \frac{n \pi}{L} x d x=A_{n} \int_{0}^{L} \sin ^{2} \frac{n \pi}{L} x d x=A_{n} \frac{L}{2}
$$

[^10]0 r

$$
\begin{equation*}
A_{n}=\frac{2}{L} \int_{0}^{L} y_{0}(x) \sin \frac{n \pi}{L} x d x \tag{3.18}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
B_{n}=\frac{2}{n \pi c} \int_{0}^{L} v_{0}(x) \operatorname{sen} \frac{n \pi}{L} x d x \tag{3.19}
\end{equation*}
$$

As an example consider a string which is released from rest from the position shown in Fig. 3.6. The initial conditions are

$$
y_{0}(x)=\left\{\begin{array}{lll}
\frac{a}{g L} x & \cdots & 0 \leq x \leq g l \\
-\frac{a}{h(1-g)}+\frac{a}{1-g} & \cdots & g L \leq x \leq L
\end{array}\right.
$$

$$
V_{0}(x)=0
$$

It should be evident that all $\mathrm{B}_{\mathrm{n}}^{\text {'今 }}$ are zero. Substituting in (3.18) we have

$$
A_{n}=\frac{2}{L} \int_{0}^{g L} \frac{a x}{g L} \operatorname{sen} \frac{n \pi}{L} x d x+\frac{2}{L} \int_{g L}^{L}\left(-\frac{a x}{L(1-g)}+\frac{a}{(1-g)}\right) \operatorname{sen} \frac{n \pi}{L} d x
$$

The integrals are readily evaluated using the method of parts. yielding

$$
A_{n}=\frac{2 a}{(n \pi)^{2} g(1 \cdot g)} \sin n \pi g \quad n=1,2,3 \ldots
$$

For $a=1 \mathrm{~cm}, g=\frac{1}{3}, L=100 \mathrm{~cm}$ and $c=10^{4} \mathrm{~cm} / 0 \mathrm{c}$ the equation describing the motion of the string becomes
$y(x, t)=.780 \sin \frac{\pi}{100} x \cos 100 \pi t+.195 \operatorname{sen} \frac{\pi}{50} x \cos 200 \pi x-.049 \sin \frac{\pi}{25} x \cos 400 \pi t+\cdots \cdot$

The coefficient of the terms for $n=3,6,9, \ldots$ are zero. A string vibrating in this manner would be said to have the $3 \mathrm{rd}, 6 \mathrm{th}$, 9 th , etc. harmonics missing.

7. Energy considerations.

Suppose a string is vibrating such that its motion is described by a function $y(x, t)$. The kinetic energy T_{K} of the string at any instant of time say t_{l} is the sum of the kinetic energies of all the elemental lengths, ie.,

$$
T_{k}=\int_{0}^{L} \frac{1}{2} \rho d x\left[\frac{\partial y(x, t)}{\partial t}\right]^{2}
$$

where the derivative $\frac{\partial u}{\partial J}$ is evaluated at the given instant of time t_{1} and is, of course, a function of x. At time t_{l} the string will have some configuration given by $y(x, t)$. The potential energy of the string in this configuration is equal to the work done by the tensile forces as the string is moved from this configuration to some arbitrarily chosen standard configuration. For convenience, we will choose the -standard configuration to be the configuration of the string when it is at rest (see Fig. 3.7). Now the potential energy of the string in any given configuration is independent of the way the string got to this configuration. (Recall that for conservative forces the work is independent of the path). In calculating the work

Fig 3.6

(b)
$\operatorname{Flg} 3,7$
done by the tensile forces we can move the string from the given configuration $y\left(x, t_{1}\right)$ to the standard configuration in any convenient. way. We will move the string from the given configuration $y\left(x, t_{l}\right)$ to the standard configuration in such a way that any intermediate configuration between the given and standard will be given by

$$
y(x)=\epsilon y(x, t, 1)
$$

where ϵ is some positive number between 0 and 1.
Consider the string in one of the intermediate configurations specified by $\dot{y}(x)$ and isolate a small element of length ΔL. The y-components of the tensile forces acting on the element are

$$
\begin{aligned}
T \operatorname{sen} 4^{\prime}-T \operatorname{sen} 4 & \left.\cong T \frac{d y}{d x}\right|_{x+4 x}-\left.T \frac{d y}{d x}\right|_{x} \\
& \cong T\left\{\left.\frac{d y}{d x}\right|_{x}+\frac{d}{d y}\left(\frac{d y}{d x}\right) \Delta x+\ldots \ldots\right]-\left.T \frac{d y}{d x}\right|_{x} \\
& \cong T \frac{d^{2} y}{d x^{2}} d x
\end{aligned}
$$

these
The work done by the forces as the string is moved from the given to the standard configuration is

$$
d U_{f}=\int_{y\left(x, t_{1}\right)}^{0}\left[T \frac{\partial^{2} y}{\partial x^{2}} d x\right] d y
$$

Remember that the quantity $\frac{d^{2} y}{d x^{2}}$ is evaluated at x and is a function of y, the variable of integration. Now

$$
\begin{aligned}
& y(x)=\epsilon y\left(x, x_{1}\right) \\
& \frac{d^{2} y}{d x^{2}}=\in \in \frac{\partial^{2} y\left(x, t_{1}\right)}{2 x^{2}} \\
& d y=y\left(x, x_{1}\right) d t
\end{aligned}
$$

Substituting one gets

$$
=-\frac{T}{2} \frac{\partial^{2} y\left(x, x_{2}\right)}{\partial x^{2}} y\left(x ; x_{1}\right) d x
$$

Dropping the subscript on the t we have for the potential energy of the entire string when it is in a configuration specified by $y(x, t)$

$$
u_{p}=-\frac{I}{2} \int_{0}^{i} y(x, x) \frac{\partial^{2} y(x, 1)}{\partial x^{2}} d x
$$

This integral may be recast in a different form by integrating using the method of parts Setting

$$
\begin{array}{ll}
u=y & d v=\frac{\partial^{2} y}{\partial x^{2}} d x \\
d u=d y & v=\frac{\partial y}{\partial x}
\end{array}
$$

we get

$$
\begin{align*}
U_{p} & =-\left.\frac{T}{2} y \frac{\partial y}{\partial x}\right|_{0} ^{2}+\frac{T}{2} \int_{0}^{2} \frac{\partial y}{\partial x} d y \\
& =0+\frac{T}{2} \int_{0}^{L} \frac{\partial y}{\partial x}\left(\frac{\partial y}{2 x} d x\right)=\frac{T}{2} \int_{0}^{2}\left(\frac{\partial y}{\partial x}\right)^{2} d x \tag{3.20}
\end{align*}
$$

The total energy thus becomes

$$
\begin{equation*}
U=U_{k}+T V_{p}=\frac{\rho}{2} \int_{0}^{L}\left(\frac{\partial y}{\partial t}\right)^{2} d x+\frac{T}{2} \int_{0}^{L}\left(\frac{\partial y}{\partial x}\right)^{2} d x \tag{3.21}
\end{equation*}
$$

If a string is vibrating in one of its characteristic modes so that its motion is described by

$$
\begin{aligned}
y_{n}(x, x) & =\operatorname{sen} \frac{n \pi}{2} x\left[A_{n} \cos \frac{n \pi s}{2} x+B_{n} \operatorname{sen} \frac{n \pi c}{2} x\right] . \\
& =C_{n} \operatorname{sen} \frac{n \pi}{2} x \cos \left(\frac{n \pi c}{2} x+\phi_{n}\right)
\end{aligned}
$$

then

$$
\begin{aligned}
& \left(\frac{\partial y}{\partial t}\right)^{2}=\left(\frac{n \pi c}{L}\right)^{2} C_{n}^{2} \operatorname{sen}^{2} \frac{n \pi}{L} \times \cos ^{2}\left(\frac{n \pi c}{L} t+\phi_{n}\right) \\
& \left(\frac{\partial y}{\partial x}\right)^{2}=\left(\frac{n \pi}{L}\right)^{2} C_{n}^{2} \cos ^{2} \frac{n \pi}{L} \times \operatorname{sen}^{2}\left(\frac{n \pi c}{L} t+\phi_{n}\right)
\end{aligned}
$$

and (3.20 yields

$$
\begin{equation*}
T_{n}=\frac{p(n \pi c)^{2}}{46} G_{n}^{2} \tag{3.21}
\end{equation*}
$$

Chapter V. WAVES IN MEMBRANES

If one blows across the top of a thin sheet of plastic (e.g. Saran Wrap) stretched across a rectangular or circular form as in Fig. 5.1 one will hear a characteristic tone. This tome is produced by the vibration of the plastic sheet. It can be inferred by inspection that the amplitude of vibration is very small, since it is difficult to observe with the unaided eye. In developing a description of the motion of such a "membrane" one assumes that the motion of any small piece is strictly at right angles to the plane formed by the undisturbed membrane. If one takes this latter plane as the $x y$ plane, then the motion of the membrane can be described by some function $z(x, y, t)$. Just as in the case of the string it turns out that any function describing the motion must satisfy a wave equation, this condition coming about by the requirement that the motion of any small piece of the membrane must be governed by Newton's second law.

5.1 Wave Equation

Consider first a membrane stretched over a rectangular form of length a and width b. Let the origin of the coordinate system be at one corner of the membrane as indicated in Fig. 5.2. We assume our membrane is homogeneous and isotropic and that the forces applied at the boundaries are uniformly distributed over the perimeter of the membrane as suggested in Fig. 5.3a. With such a uniform distribution, the magnitude of the force on any piece of the perimeter of length ΔL can be expressed as $T \Delta L$ where T is the force per unit length (the sum of the magnitudes of all the forces shown divided by the perimeter). If one isolates for consideration the triangular (shaded) portion of the membrane shown
in Fig. 5.3 a and band asks what forces the adjacent portion of the membrane must exert on this isolated piece, in order that the isolated piece be in equil ibrium, one sees that these forces must have a resultant $\overrightarrow{\mathrm{R}}$ whose x and y components must be numerically equal to $T \Delta L^{\prime}$ and $T \Delta L$ respectively. This resultant must have a magnitude given by

$$
R=\sqrt{(T \Delta L)^{2}+\left(T \Delta L^{\prime}\right)^{2}}=T \sqrt{(\Delta L)^{2}+\left(\Delta L^{\prime}\right)^{2}}=T\{\text { lengthof side } \Delta F\}
$$

Moreover, it should be evident from geometry that \vec{R} is at right angles to the side $\triangle F$. By extending this argument to other portions of the membrane one arrives at the conclusion that the force that any piece of the membrane exerts on an adjacent portion across the line separating the two is always in the nature of a pull at right angles to the line and has a magnitude equal to T multiplied by the length of the line. The quantity T which is determined by the externally applied forces is called the tension in the membrane.

It follows from the above argument that with the membrane at rest, the forces exerted on a small piece $\Delta x \Delta y$ of the membrane by the adjacent portions are as indicated in Fig. 5.4a. In Fig. 5.4b the membrane is shown at some instant of time tofer it has been set in vibration. The two forces labelled $T " \Delta y$ and $T{ }^{\prime \prime} \Delta y$ no longer lie in the $x y$ plane; each makes a small angle with the x-axis, as indicated in Fig. 5.4c which shows the curve formed by the intersection of the membrane with a plane parallel to the $x y$ plane and passing through the center of $\Delta x \Delta y$. Since the motion of $\Delta x \Delta y$ is assumed to be only in the $z-d i r e c t i o n, ~ t h e ~ x-c o m p o n e n t s$ of T " Δy and $T^{\prime} \Delta y$ must add up to zero. If the angles $\alpha^{\prime \prime}$ and χ^{\prime}. which these two forces make with the x-axis are sufficiently small so that the cosines may be taken as unity, then

$$
\mathrm{T}^{\prime \prime} \Delta \mathrm{y}-\mathrm{T}^{\prime} \Delta \mathrm{y}=0
$$

or

$$
T^{\prime \prime}=T^{\prime}=T
$$

where the last result follows from consideration of an element of area whose edge coincides with one of the boundaries. Since the y-components of the forces on $\Delta x \Delta y$ must also add up to zero, it follows that $T_{2}=T_{1}=T$. Thus the magnitudes of the four forces shown in Fig. 5.4a remain unchanged when the membrane is set in motion; only their direction changes.

The z -components of the two forces $T^{\prime \prime} \Delta x$ and $T^{\prime} \Delta x$ is from Fig. 5.4 c

$$
\begin{aligned}
T \Delta x \sin \alpha^{\prime \prime} & -T \Delta x \sin \psi^{\prime} \cong T \Delta x\left[\tan \alpha^{\prime \prime}-\tan \alpha^{\prime}\right] \\
& \cong T \Delta x\left[\left.\frac{\partial z}{\partial x}\right|_{x+\Delta x, y, t}-\left.\frac{\partial \gamma}{\partial x}\right|_{x, y, t}\right]
\end{aligned}
$$

Similarly, by considering the curve formed by the intersection of the membrane with a plane parallel to the az axis and passing through the center of $\Delta x \Delta y$, one finds the z-components of the forces $T_{2} \Delta x$ and $T_{1} \Delta y$ to be

$$
T \Delta y\left\{\left.\left.\frac{\partial z(x, y, t)}{\partial y}\right|_{x, y, \Delta y, t} \frac{\partial z(x, y, t)}{\partial y}\right|_{x, y, t}\right\}
$$

Newton's equation of motion for the element thus becomes

$$
\begin{aligned}
& T \Delta y\left\{\left.\frac{\partial y}{\partial y}\right|_{x+\Delta x, y, t}-\left.\frac{\partial y}{\partial y}\right|_{x, y, t}\right\}+T_{\Delta y}\left\{\left.\frac{\partial \gamma}{\partial x}\right|_{x, y+\Delta y, \bar{t}}\right. \\
&\left.\frac{\partial y}{\partial x}\right|_{x, y, t}=\left.(\sigma \Delta x \Delta y) \frac{\left.\partial^{2}\right\}}{\partial t^{2}}\right|_{x+1,}, \ldots \frac{1}{2}
\end{aligned}
$$

where is the mass per unit area of the membrane. Dividing through by $\Delta x \Delta y$ and passing to the limit one obtains

$$
T \frac{\frac{\partial}{}_{2}^{\partial x}}{\partial x^{2}}+T \frac{\partial^{2} y}{\partial y^{2}}=\sigma \frac{\partial^{2} y}{\partial t^{2}}
$$

or

$$
\begin{equation*}
c^{2}\left[\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}\right]=\frac{\partial^{2} z}{\partial t^{2}} \quad ; \quad ;=\sqrt{T / 0} \tag{5.1}
\end{equation*}
$$

This is the wave equation for waves in membranes and any function $z(x, y, t)$ which is to describe the motion of a membrane must be a solution of this wave equation.

It is a simple matter to demonstrate that any function $f(u)$ where

$$
u=c t-(x \cos \theta+y \sin \theta)
$$

is a solution of the wave equation (5.l) for arbitrary values of θ. That functions $f(c t-[x \cos \theta+y \sin \theta]$) have wave properties can easily be seen by choosing a new coordinate system X. Y where axes are inclined at an angle θ to the wy axis as indicated in Fig. 5.5. For any point P, the x and y coordinates are related to the X and Y coordinates by

$$
x=x \cos \theta+y \sin \theta ; \quad y=y \cos \theta-x \sin \theta
$$

Hence $f(c t-[x \cos \theta+y \sin \theta])$ becomes $f(c t-x)$. This we recognize as a disturbance being propagated in the $+X$ direction with a velocity c. Hence any further $f(\operatorname{ct}-[x \cos \theta+y \sin \theta])$ represents a disturbance being propagated in a direction making an angle θ to the positive x axis.

5.2 Harmonic Solutions, Boundary Conditions, Eigen Functions

The general approach for finding solutions of partial different equations is to separate the variables, i.e. to look for solutions of the form

$$
\begin{equation*}
z(x, y, t)=X(x) Y(y) H(t) \tag{5.2}
\end{equation*}
$$

where $X(x)$ is a function of x, $Y(y)$ is a function of y only and $H(t)$ is a function of t only. Substituing (5.2) into the wave equation one obtains after rearranging the following expression

$$
c^{2}\left[\frac{1}{x} \frac{d^{2} Y}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}\right]=\frac{1}{H} \frac{d^{2} H}{d t^{2}}
$$

If (5.2) is a solution, the above expression must hold for all values of x, y and t. Since the left-hand side is only a function of x and y it doesn't change with t, and hence the righthand side must be the same for all times, i.e. equal to a constant. Calling this constant-W W^{2} we, obtain the following two ordinary differential equations

$$
-\frac{1}{H} \frac{d^{2} H}{d t^{2}}=-w^{2}
$$

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-\left(\frac{W}{c}\right)^{2}-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}
$$

The general solution of the first of these should be immediately apparent. It is

$$
H(t)=C_{3} \cos \omega t+D_{3} \sin \omega t
$$

where C_{3} and D_{3} are arbitrary constants.

The second equation must hold for all x and y if (5.2) is to be a solution. Again this leads to the conclusion that both sides must be equal to a constant. Calling this constant- α^{2} we obtain the following two differential equations

$$
\begin{gathered}
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-\alpha^{2} \\
\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=-\left[\left(\frac{W}{c}\right)^{2}-\alpha^{2}\right]
\end{gathered}
$$

We can write down the general solutions of these two equations immediately since they are of the same form as (5.2) provided $\frac{\omega}{c}>\alpha$. We obtain.

$$
\begin{aligned}
& X=C_{1} \cos \alpha x+D_{1} \sin \alpha x \\
& Y=C_{2} \cos \sqrt{\left(\frac{\omega}{c}\right)^{2}-x^{2}} y+D_{2} \sin \sqrt{\left(\frac{\mu}{c}\right)^{2}-\alpha^{2} y}
\end{aligned}
$$

Our solution of the form (5.2) is thus

$$
\begin{array}{r}
z(x, y, t)=\left[C_{1} \cos \alpha x+D_{1} \sin \alpha x\right]\left[C_{2} \cos \sqrt{\left(\frac{w}{c}\right)^{2}-\alpha^{2}} y+D_{2}\right. \\
\left.\sin \sqrt{\left(\frac{w}{c}\right)^{2}-\alpha^{2} y}\right]\left[C_{3} \cos \omega t+D_{3} \sin \omega t\right] \tag{5,3}
\end{array}
$$

This is a solution for every value of W and every value of and for arbitrary values of the constants $C_{1}, C_{2}, C_{3}, D_{1}, D_{2}, D_{3}$. If such a function did describe the motion of the membrane, then any point (x, y) of the membrane would be moving in simple harmonic motion with a frequency ω. For this reason (5.3) is called an harmonic solution.

If the membrane is stretched over a rectangular form of dimensions a and $b, ~ t h e n ~ f u n c t i o n, ~ z(x, y, t), ~ d e s c r i b i n g ~ t h e ~$ motion of the membrane must satisfy the following boundary conditions:

$$
\begin{aligned}
\text { (i) } & z(0, y, t)=0 \\
\text { (ii) } & z(a, y, t)=0 \\
\text { (iii) } & z(x, 0, t)=0 \\
\text { (iv) } & z(x, b, t)=0
\end{aligned}
$$

If we examine the harmonic solution (5.3) it is apparent that if we choose C_{1} and C_{2} both equal to zero, conditions (i) and (iii) will be satisfied. MoFedth we can satisfy condition (ii) for arbitrary values of D_{1} if we restrict \odot to values given by

$$
\alpha=\frac{m \pi}{a} \quad m=1,2,3, \ldots \ldots \ldots
$$

and we can satisfy condition (iv) for arbitrary values of D_{2} if we restrict $\sqrt{\left(\frac{W}{c}\right)^{2}-\alpha^{2}} \quad$ to values given by

$$
\sqrt{\left(\frac{w^{2}}{c}\right)-\alpha^{2}}=\frac{n \pi}{b} \quad n=1,2,3 \ldots \ldots
$$

We see from these two restrictions that the harmonic solution (5.3) will satisfy the boundary conditions only for values of ω given by

$$
W=c \sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}} \quad \begin{aligned}
& m=1,2,3 \ldots \ldots \\
& n=1,2,3 \ldots \ldots
\end{aligned}
$$

and hence for frequencies

$$
f=\frac{W}{2 \pi}=\frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}
$$

These values of W and f are of course the eigen frequencies and the corresponding functions,

$$
\begin{aligned}
y_{m n}(x, y, t)= & \sin \frac{a n}{a} x \sin \frac{n \pi}{b} y\left[A_{m n} \cos \left(c \sqrt{\left(\frac{n \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right) t}\right) T\right. \\
& B_{m n} \sin \left(c \sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi)^{2}+}{b}\right)}\right]
\end{aligned}
$$

are the eigen functions of membrane with a rectangular boundary. There is an eigen function for any combination of values of m and n. The smallest of the eigen frequencies

$$
w_{11}=c \sqrt{\left(\frac{\pi}{a}\right)^{2}+\left(\frac{\pi}{b}\right)^{2}}
$$

is called the fundamental frequency and if the membrane is vibratoing so that its motion is described by the corresponding eigen function

$$
\begin{aligned}
& z_{11}(x, y, t)=\sin \frac{\pi}{a} x \sin \frac{\pi}{b} y\left[A_{11} \cos \left(c \sqrt{\left(\frac{\pi}{a}\right)^{2}+\left(\frac{\pi}{b}\right)^{2}} t\right)+\right. \\
& \left.B_{11} \sin \left(c \sqrt{\left(\frac{\pi}{a}\right)^{2}+\left(\frac{\pi}{b}\right)^{2}} t\right)\right]=\left[C_{11} \sin \frac{\pi}{a} x \sin \frac{\pi}{b} y\right] \cos \left(\omega_{11} t+\phi_{11}\right)
\end{aligned}
$$

it is said to be vibrating in its fundamental mode. If it is vibrating in its fundamental mode, the amplitude of the motion (represented by the quantity in the brackets) is a maximum at the center of the membrane, since the two sine terms in the bracket have a value of one at that point. Since sin $\underset{a}{ } x \sin \frac{T}{b} x$ is positive for every point of the membrane, if at any time $z_{11}(x, y, t)$ is positive for any one point it will be positive for every other point; the motion of any point of the membrane is thus in pase with the motion of every other point.

If a membrane is vibrating so that it is described by the eigen function for which $m=2$ and $n=3$ ie. the function

$$
\begin{aligned}
z_{23} & =\sin \frac{2 \pi}{a} x \sin \frac{3 \pi}{b} y\left[A_{23} \cos \omega_{23} t+B_{23} \cos 23 t\right] \\
& =\left[c_{23} \sin \frac{\operatorname{cin}}{a} x \sin \frac{3 \pi}{b} y\right] \cos \left(\omega_{23} t+\phi_{23}\right)
\end{aligned}
$$

$$
w_{23}=c \sqrt{\left(\frac{3 \pi}{a}\right)^{2}+\left(\frac{3 \pi}{b}\right)^{2}}
$$

then it should be apparent that the amplitude will be zero for any point for which

$$
x=\frac{a}{2}
$$

and zero for any point for which

$$
y=\frac{b}{3}, \frac{2 b}{3}
$$

Hence, in addition to the boundaries there will be nodal lines as indicated by the dotted lines in Fig. 5.6. Note that the quantity $\sin \frac{2 \pi}{a} x \sin \frac{3 \pi}{b} y$ is positive for every point in the shaded regions of Fig. 5.6 and negative for every point in the unshaded regions. If then at some instant of time $z_{23}(x, y, z, t)$ is positive for one of the points in the shaded regions it will be positive for every point in the shaded regions and negative for every point in the unshaded regions. Thus the motions of any two points in the shaded region are in phase, and are 180° out of phase with the motion of any point in the unshaded region.

5.4 General Solution,

The sum
$z(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sin \frac{m \pi}{a} x \sin \frac{n \pi}{b}\left[A_{m n} \cos w_{m n} t+B_{m n}\right.$

$$
\left.\sin \omega_{m n} t\right]
$$

$$
W_{m n}=\sqrt{\left(\frac{m \pi c}{a}\right)^{2}+\left(\frac{n \pi c}{b}\right)^{2}}
$$

of all the eigen functions is itself a solution of the wave equations satisfying the boundary conditions. It may be regarded as a general solution in the sense that with the proper choice of the $A_{m n}$'s and the $B_{m n}$'s it will describe the motion of a membrane started in vibration in an arbitrary way (subjected, of course, to the limits on the amplitude for which our approximations are reasonably valid). If one knows the z coordinate and the velocity
of every point of the membrane at some instant of time, say $t=0$, then one can determine the $A_{m n}{ }^{\prime} s$ and the $B_{m n}{ }^{\prime} s$ such that (5.4) will describe its subsequent motion. If

$$
\begin{aligned}
& z_{0}(x, y) \\
& v_{0}(x, y)
\end{aligned}
$$

are the functions describing the position and velocity of each point of the membrane at $t=0$, then

$$
z_{0}(x, y)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sin \frac{m \pi}{a} x \sin \frac{n \pi}{b} y, A_{m n}
$$

Multiplying both sides by $\sin \frac{m^{\prime} x}{a} \sin \frac{n^{\prime} y}{b} d x d y$ and integrating over the surface of the membrane one obtains

$$
\begin{aligned}
& \int_{0}^{b} \int_{0}^{a} z_{0}(x, y) \sin \frac{m^{\prime} x}{a} \sin \frac{n^{\prime} y}{b} d x d y= \\
& \int_{0}^{b} \int_{0}^{a} \sin \frac{m^{\prime} \pi}{a} x \sin \frac{n^{\prime} \pi}{b} y d x d y \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sin \frac{m \pi}{a} x \sin \frac{n \pi}{b} y
\end{aligned}
$$

Although the double sum on the right looks more formidable than the single sum we obtained in the case of strings, if one writes out a few terms of this double sum, it will be seen that the integration is perfectly straight forward, all integrals being zero except those for $m=m^{\prime}$ and $n=n^{\prime}$. For $m=m^{\prime}$ and $n=n '$ the integration on the right yields $\frac{a b}{4}$ so that

$$
A_{m n}=\frac{4}{a b} \int_{0}^{a} \int_{0}^{b} z_{o}(x, y) \sin \frac{m x}{a} \sin \frac{n y}{b} d x d y
$$

Similarly one obtains

$$
B_{m n}=\frac{4}{a b j m n} \int_{0}^{a} \int_{0}^{b} v_{0}(x, y) \sin \frac{m x}{a} \sin \frac{n y}{b} d x d y
$$

5.5 Circular Boundary, Wave Equation in Polar Coordinates

For a membrane with a circular boundary, Fig. 5.7 a and b, the external forces are presumed to be distributed uniformly around the boundary so that the magnitude of the force exerted on any small segment of length ΔL of the boundary can be written as $T \Delta L$, where T is a constant called the tension. By requiring that each portion of the mémbrane be in equilibrium, one can show by an argument similar to that used in section 5.1 that the force that any portion of the membrane exerts on an adjacent portion across the line separating the two is always in the nature of a pull at right angles to the line and has a magnitude equal to multiplied by the length of the line. If the motion of each piece of the membrane is perpendicular to the plane of the undisturbed membrane, the motion can be described by some function $z(r, \emptyset, t)$.

Fig. 5.7d shows the forces exerted on a small segment of the membrane of area $r \Delta \emptyset \Delta r$, when the membrane is at rest. Fig. $5.7 e$ shows at some instant of time t after the membrane has been set in motion, the curme formed by the intersection of the membrane with the radial plane $z=\emptyset+\frac{\Delta \emptyset}{2}$. The two forces labelled $T(r+\Delta r) \Delta \emptyset$ and $T r \Delta \emptyset$ in Fig. 5.7d are labelled $T "(r+\Delta r) \Delta \emptyset$ and $T^{\prime \prime} r \Delta \emptyset$ in Fig. 5.7e. Writing down Newton's second law for the r-motion one has at this instant of time

$$
=T \prime(r+\Delta r) \Delta \emptyset \cos \xi^{\prime \prime}-T^{\prime} r \Delta \emptyset \cos \xi^{\prime}=\sigma r \Delta r \Delta \emptyset \quad a_{r}
$$

where ${ }^{a}$ is the radial component of acceleration of the midpoint of the segment. If the angles $\chi^{\prime \prime a n d} \chi^{\prime}$ are at every instant sufficiently small, then since there is no radial motion, $a_{r}=0$ - and one obtains on dividing by $\lfloor\emptyset$ and passing to the limit as... goes to zero

$$
T^{\prime \prime}-T^{\prime}=0
$$

or

$$
\mathrm{T}^{\prime \prime}=\mathrm{T}^{\prime}=\mathrm{T}
$$

where the last result follows by considering a small segment whose outer edge coincides with the boundary of the membrane. The z -components of the two forces T " $(r+\Delta r) ~ \emptyset$ and $T r^{\prime} \Delta \emptyset$ can now be written

$$
\left.T(r+\Delta r) \Delta \emptyset \frac{\partial z(r, \phi, t)}{\partial r}\right|_{r+\Delta r, \emptyset, t}-\left.T r \Delta \emptyset \frac{\partial z}{\partial r}\right|_{r, \phi, t}
$$

where we have used the approximation that $\sin \chi^{\prime \prime} \simeq \tan \phi^{\prime \prime}=\left.\frac{\partial z}{\partial r}\right|_{r}+\Delta r$ and $\sin \phi^{\prime}=\tan \psi^{\prime}=\left.\frac{\partial z}{\partial r}\right|_{r}$. In a similar manner, by considering $+\Delta r$ the curve formed by the $\begin{aligned} & \text { intersection of the membrane with the }\end{aligned}$ cylinder $z=r+\frac{\Delta r}{2}$, one can show that the vertical components of the two forces labelled $T \Delta r$ in Fig. 5.7d are at time t given by

$$
\left.T \Delta r \frac{\partial z(r, \emptyset, t)}{r \partial \emptyset}\right|_{r, \emptyset+\Delta \emptyset, t}-\left.T \Delta r \frac{\partial z(r, \emptyset, t)}{r \Delta \emptyset}\right|_{r, \emptyset, t}
$$

Newton's second law for the z-motion of the element r $\Delta r \Delta \emptyset$ becomes

$$
\begin{aligned}
& \left.T(R+\Delta r) \Delta \emptyset \frac{\partial z}{\partial r}\right|_{r+\Delta r, \emptyset, t}-\left.\operatorname{Tr} \Delta \emptyset \frac{\partial z}{\partial r}\right|_{r, \emptyset, t} \\
& \quad+\left.T \Delta r \frac{\partial z}{\partial \emptyset}\right|_{r, \phi+\Delta \emptyset, t}-\left.T \Delta r \frac{\partial z}{\partial \emptyset}\right|_{r, \emptyset, t}=\left.\sigma \sim r \Delta r \Delta \emptyset \frac{\partial^{2} z}{\partial t^{2}}\right|_{r} \frac{\Delta r}{2} \\
&
\end{aligned}
$$

Dividing by $r \Delta r \Delta \emptyset$ and passing to the limit as both $\Delta \mathrm{r}$ and $\Delta \emptyset$ go to zero one obtains
$T\left[\frac{\partial^{2} z}{\partial r^{2}}+\frac{1}{r} \frac{\partial z}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \phi^{2}}\right]=\sigma \frac{\partial^{2} z}{\partial t^{2}}$
or

$$
\begin{equation*}
c^{2}\left[\frac{\partial^{2} z}{\partial r^{2}}+\frac{1}{r} \frac{\partial z}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \phi^{2}}\right]=\frac{\partial^{2} z}{\partial t^{2}} \quad d=\sqrt{T / \sigma} \tag{5.5}
\end{equation*}
$$

This is the wave equation expressed in polar coordinates.

5.6 Harmonic Solution, Bessel Functions

If there are solutions of the wave equation of the form

$$
\begin{equation*}
Z(r, \phi, t)=R(r) \Phi(\phi) H(t) \tag{5.6}
\end{equation*}
$$

then substitution into (5.5) leads to the condition

$$
c^{2}\left[\frac{1}{R}\left(\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d B}{d r}\right)+\frac{1}{\Phi r^{2}} \frac{d^{2} \phi}{d \phi^{2}}\right]=\frac{1}{H} \frac{d^{2} H}{d t^{2}}
$$

which must hold for all times and for all values of r and \emptyset.
It follows that both sides must equal the same constant. Calling this constant $-\omega^{2}$ leads to the following two equations

$$
\begin{gather*}
\frac{d^{2} H}{d t^{2}}=-\omega^{2} H \tag{5.7}\\
r^{2}\left[\frac{1}{R}\left(\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}\right)+\frac{W^{2}}{c^{2}}\right]=-\frac{1}{\Phi} \frac{d^{2} \Phi}{d \emptyset^{2}} \tag{5.8}
\end{gather*}
$$

Since the latter of these equations must hold for all values of \emptyset and all values of r, each side must equal the same constant. Calling this constant m^{2} leads to the following two differential equations

$$
\frac{d^{2} \Phi}{d \emptyset^{2}}=-m^{2} \Phi
$$

$$
\begin{equation*}
\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}+\left(k^{2}-\frac{m^{2}}{r^{2}}\right) R=0 \tag{5.10}
\end{equation*}
$$

where $k=W / c$. If one can find solutions of (5.7), (5.9) and (5.10) then there exists a solution of the form $R(r) \Phi(\emptyset) H(t)$. Solutions of (5.7) and (5.9) are readily apparent:

$$
\begin{aligned}
& H(t)=A \cos \omega t+B \sin w t \\
& \Phi(\emptyset)=A^{\prime} \cos m \emptyset+B^{\prime} \cos m \emptyset
\end{aligned}
$$

Assuming one can find some function say $R(r)$ which satisfies (5.10) one will have an harmonic solution of the form
$\left.z(r, \phi, t)=R(r)\left[A^{\prime} \cos m \phi+B^{\prime} \sin m \emptyset\right][A \cos \omega t+B \sin \omega t)\right]$
If this function is actually describing the motion of a membane then the motion of a point located say at r_{1}, \emptyset_{1} is given by $z\left(r_{1}, \emptyset_{1}, t\right)$. Since the point located at ($\left.r_{1}, \emptyset_{1}\right)$ and the one at $\left(r_{1}, \emptyset_{1}+\ell 2 \pi\right)$ where ℓ is any integer are exactly the same point of the membrane it follows that for the description of the motion to be unambiguous $z\left(r_{1}, \emptyset_{1}, t\right)=z\left(r_{1}, \emptyset_{1} \pm \ell 2 \pi, t\right)$, \&quation (5.11) will have this required property only if the constant m is restricted to integral values, i.e.

$$
\mathrm{m}=0,1,2,3 \ldots
$$

Keeping in mind that m must have integral values, we attempt to find a solution of (5.10) by assuming one exists of the form

$$
\begin{equation*}
R(r)=a_{0}+a_{1} r+a_{2} r^{2}+a_{3} r^{3}+\ldots=\sum_{n=0}^{\infty} a_{n} r^{n} \tag{5.12}
\end{equation*}
$$

where $a_{1}, a_{2} \ldots$ are constants. It follows that
$\frac{1}{r} \frac{d R}{d r}=\quad . a_{1} r^{-1}+2 a_{2}+3 a{ }_{3} r+4 a 4^{r^{2}}+5 a_{5} r^{3}+\ldots$.

$$
\begin{array}{ll}
\frac{d^{2} R}{d r^{2}}= & 2 a_{2}+6 a_{3} r+12 a_{4} r^{2}+20 a_{5} r^{3}+\ldots \\
k^{2} R= & k^{2} a_{0}+k^{2}{ }_{a}{ }_{1} r+k^{2} a_{2} r^{2}+k^{2} a_{3} r^{3}+\ldots
\end{array}
$$

$$
\frac{-m^{2}}{r^{2}} R=-m^{2} a_{o} r^{-2}-m^{2} a_{1} r^{-1}-m^{2} a_{2}-m^{2} a_{3} r-m^{2} a_{4} r^{2}-m^{2} a_{5} r^{3}+\ldots
$$

Substituting into (5.10) one gets

$$
\begin{align*}
\frac{-m^{2} a_{o}}{r^{2}}+\frac{\left(1-m^{2}\right) a_{1}}{r} & +\left[\left(4-m^{2}\right) a_{2}+k^{2} a_{0}\right] r^{0}+\left[\left(9-m^{2}\right) a_{3}+k^{2} a_{1}\right] r \tag{5.13}\\
& \left.+\left[\left(16-m^{2}\right) a_{4}+k^{2} a_{2}\right] r^{2}+\left[\left(25-m^{2}\right) a_{5}+k^{2} a_{3}\right)\right] r^{3} \ldots=0
\end{align*}
$$

Remembering that this expression must be zerofor all values of r if (5.12) is to be a solution, it is apparent that either mor a must be zero, and either ($1-\mathrm{m}^{2}$) or ${ }_{\mathrm{a}}^{\mathrm{l}}$ must be zero, since otherwise the first and second terms become infinite at $r=0$. If $m=0$, setting $a_{1}, a_{3}, a_{5} \ldots .$. equal to zero and choosing

$$
\begin{aligned}
& a_{2}=-\frac{k^{2}}{4} a_{0} \\
& a_{4}=-\frac{k^{2}}{16} a_{2}=\frac{k^{4}}{(16)(4)} a_{0} \\
& a_{6}=-\frac{k^{2}}{36} a_{4}=-\frac{k^{6}}{(36)(16) 4} a_{0}
\end{aligned}
$$

will make (5.13) identically zero for any arbitrary choice of a ${ }_{0}$.

For $m=1$ setting $a_{0}, a_{2}, a_{4}, a_{6}, \ldots$ all equal to zero and choosing

$$
\begin{aligned}
& a_{3}=-\frac{k^{2}}{8} a_{1} \\
& a_{5}=-\frac{k^{2}}{24} a_{3}=\frac{\mathrm{k}^{4}}{(24)(8)} a_{1} \\
& a_{7}=-\frac{k^{2}}{48} a_{5}=\frac{\mathrm{k}^{6}}{(48)(24) 8} a_{l}
\end{aligned}
$$

will make (5.13) identically zero for any arbitrary choice of a ${ }_{1}$. For $m=2 \operatorname{setting} a_{o}$ and $a_{1}, a_{3}, a_{5}, a_{7} \ldots$ all equal to zero and choosing

$$
\begin{aligned}
& a_{4}=-\frac{k^{2}}{12} a_{2} \\
& a_{6}=-\frac{k^{2}}{32} a_{4}=\frac{\mathrm{k}^{4}}{(32)(12)} a_{2} \\
& a_{8}=-\frac{\mathrm{k}^{2}}{60} a_{4}=-\frac{k^{6}}{(60)(32)(12)} a_{2}
\end{aligned}
$$

will make (5.13) identically zero for an arbitrary choice of an . Thus the following are solutions of (5.10):

$$
\begin{aligned}
\mathrm{m}=0, \mathrm{R}(\mathrm{r}) & =a_{0}\left[1-\frac{(\mathrm{kr})^{2}}{4}+\frac{(\mathrm{kr})^{4}}{(16)(4)}-\frac{(\mathrm{kr})^{6}}{(36)(16)(4)}+\ldots\right] \\
& =a_{0}\left[1-\frac{\left(\frac{\mathrm{kr}}{2}\right)^{2}}{1!1!}+\frac{\left(\frac{\mathrm{kr}}{2}\right)^{4}}{2!2!}-\frac{\left(\frac{\mathrm{kr}}{2}\right)^{6}}{3!3!}+\ldots\right] \\
& =a_{0}\left[J_{0}(\mathrm{kr})\right] \\
m=1, \quad R(r) & =a_{1}\left[r-\frac{\mathrm{k}^{2} \mathrm{r}^{3}}{8}+\frac{\mathrm{k}^{4} \mathrm{r}^{5}}{(24)(8)}-\frac{\mathrm{k}^{6} \mathrm{r}^{7}}{(48)(24)(8)}+\ldots\right] \\
& =\frac{2 a_{1}}{\mathrm{k}}\left[\frac{\left(\frac{\mathrm{kr}}{2}\right)}{0!1!}-\frac{\left(\frac{\mathrm{kr}}{2}\right)^{3}}{1!2!}+\frac{\left(\frac{\mathrm{kr}}{2}\right)^{5}}{2!3!}-\frac{\left(\frac{\mathrm{kr}}{2}\right)^{7}}{3!4!}+\cdots\right] \\
& =\frac{2 a_{1}}{\mathrm{k}}[\mathrm{~J}(\mathrm{kr})]
\end{aligned}
$$

$$
\begin{aligned}
-m=2, R(r) & =a_{2}\left[r^{2}-\frac{k^{2}}{12} r^{4}+\frac{k^{4}}{(32)(12)} r^{6}-\frac{k^{6} r^{8}}{(60)(32) 12}+\ldots\right] \\
& =\frac{8 a 2}{k}\left[\frac{(k r / 2)^{2}}{0!2!}-\frac{(k r / 2)^{4}}{1!3!}+\frac{(k r / 2)^{6}}{2!4!}-\frac{(k r / 2)^{8}}{3!5!}+\cdots\right] \\
& =\frac{8 a_{2}}{k}\left[J_{2}(k r)\right]
\end{aligned}
$$

and so on. As indicated above, $J_{0}(k r), J_{1}(k r)$ and $J_{2}(k r)$ are shorthand notations for the infinite series contained in the brackets of the above solutions. The infinite series for which $J_{0}(k r)$ stands is called the zero order Bessel function of the first kind.

Similarly $J_{1}(k r)$ and $J_{2}(k r)$ are referred to respectively as the first and second order Bessel functions of the first kind. A plot of these functions (Fig. 5.8) shows that each of these functions resembles a decaying sine function. Some of the more interesting and useful properties of these functions are summarized in Table 5.l. integial
It should now be evident that there exist for every indeger value of m an harmonic solution of the wave equation of the form.

$$
\begin{align*}
z_{m}(r, \emptyset, t) & =J_{m}(k r)\left[A_{m}^{\prime} \sin m \emptyset+B_{m}^{\prime} \cos m \emptyset\right]\left[A_{m} \cos \omega t+B_{m} \cos \omega t\right] \\
& =C_{m} J_{m}(k r)\left[\sin \left(m \emptyset+\alpha_{m}\right)\right]\left[\cos \left(\omega t+\Omega_{m}\right)\right] \tag{5.14}
\end{align*}
$$

Each of these harmonic solutions is a solution for every positive value of k and for arbitrary values of $A^{\prime}{ }_{m}, B^{\prime}{ }_{m}, A_{m}$ and B_{m} (or C_{m}, \propto_{m} and Ω_{m})
5.7 Eigen Frequencies, Eigen Functions, Characteristic Modes for Circular Membrane

Then
If the radius of the circular membrane is a the boundary condition is that

$$
z_{m}(a, \emptyset, t)=0
$$

An examination of (5.14) that this will be satisfied if the first kind
$J_{m}(k a)=0$. Every Bessel function of is zero for certain values of the argument. These values determine the eigen ferequencies. For example

$$
\begin{aligned}
& J_{0}(k a)=0 \text { for } k a=2.405,5.520,8.654, \ldots \\
& J_{1}(k a)=0 \text { for } k a=3.832,7.016,10.174, \ldots \\
& J_{2}(k a)=0 \text { for } k a=5.136,8.417,11.620, \ldots
\end{aligned}
$$

Since $k=\omega / c$, the eigen frequencies for $m=0,1$ and 2 are

$$
\begin{array}{rlrl}
m & =0 & m & =1 \\
w_{01} & =\frac{2.405}{a} \mathrm{c} & w_{11} & =\frac{3.832}{a} \mathrm{c} \\
w_{02} & =\frac{5.520}{a} \mathrm{c} & w_{21} & =\frac{5.136}{a} \mathrm{c} \\
w_{12} & =\frac{7.016}{a} \mathrm{c} & w_{22} & =\frac{8.417}{a} \mathrm{c} \\
w_{03} & =\frac{8,654}{} \mathrm{c} & w_{13} & =\frac{10.174}{a} \mathrm{c} \\
w_{23} & =\frac{11.620}{a} \mathrm{c}
\end{array}
$$

The corresponding eigen functions are

$$
\begin{aligned}
& z_{01}=C_{01} J_{0}\left(\frac{2.405}{a} r\right) \quad \cos \left(\frac{2.405}{a} c t+\Omega_{01}\right) \\
& z_{02}=C_{02} J_{0}\left(\frac{5 \cdot 520}{a} r\right) \cos \left(\frac{5.520}{a} c t+\Omega_{02}\right) \\
& z_{11}=C_{11} J_{1}\left(\frac{3.832}{a} c\right) \quad \sin (\emptyset+\underset{11}{\infty}) \cos \left(\frac{3.832}{a} c t+\Omega_{11}\right) \\
& \mathrm{z}_{12}=\mathrm{C}_{12} \mathrm{~J}_{1}\left(\frac{7.016}{a} \mathrm{c}\right) \quad \sin \left(\phi+\alpha_{12}\right) \cos \left(\frac{7.016}{a} \mathrm{c} t+\Omega_{12}\right) \\
& z_{21}=C_{21} J_{2}\left(\frac{8.654}{a} c\right) \sin \left(2 \emptyset+\alpha_{21}\right) \quad \cos \left(\frac{8.654}{a} c t+\Omega_{21}\right)
\end{aligned}
$$

The smallest of the eigen frequencies is ω_{01} and the corresponding actual frequency $f_{01}=W_{01} / 2 \pi$ is called the fundamental frequency. If the membrane is vibrating so that its motion is described by z_{01} it is said to be vibrating in its fundamental mode. Since z_{01} is not a function of \emptyset, the fundamental mode exhibits circular symmetry. A plot of $J_{0}\left(\frac{2.405}{a} r\right)$ as a function of r is shown in Fig. 5.9.a. Since this is everywhere positive, it follows that all points of the membrane vibrate in phase, and the membrane vibrates as suggested in Fig. 5.9 b and c.

If the membrane is vibrating so that its motion is described by z_{02} then it should be evident from Fig. 5.9.c. that the motion of all points of the membrane for which $\mathrm{r} \geqslant 2.405 \mathrm{a} / 5.520$ is 180° out of phase with the motion of those points for which r<2.405a/5.520. The motion of the membrane is as indicated in Figs. 5.9d and e.

The modes for which $m \neq 0$ are slightly more difficult to describe, since the amplitude at any point depends on \emptyset as well as r. For the mode described by z_{11}, a plot of $J\left(\frac{3.832}{a} r\right)$ as a function of r, Fig. 5.10a, reveals that this function is positive for $\mathrm{r}<\mathrm{a}$. However, a plot of $\cos \left(\emptyset+\alpha_{11}\right)$ as a function of \emptyset shows it is positive for $\emptyset<\frac{\pi}{2}-\alpha_{1}$ and negative for $\frac{\pi}{2}-\phi<\frac{3}{2} \pi-\alpha_{11}$ There is a nodal line, $\emptyset=\frac{\pi}{2}-\infty, \alpha_{1}$ and the motion of points on one side of this line is 180° out of phase with the motion of points on the other side as suggested in Fig. 5.10c. Figures 5.10 d , e and f suggest how the motion of the mode described by ${ }^{2} 12$ may be deduced. This mode exhibits two nodal lines and one nodal circle. Table 5.2 lists the nodal patterns for the modes corresponding to the ten smallest eigen frequencies.

5.8 The Kettledrum

A kettledrum consists of membrane stretched over the open end of a hemispherical vessel as suggested in Fig. 5.11. When the membrane is at rest, the air trapped in the vessel will be at atmospheric pressure, the same as the air outside, so that the net force on any small area of the membrane due to the pressure of the air is zero. If the membrane is depressed slightly, the volume of the trapped air will decrease and the pressure will increase. The increase in pressure will give rise to a net force on each element of area ΔS of the membrane, the magnitude of the net force being $\left(P-P_{o}\right) \Delta S$ where P is the pressure of the trapped air and P_{0} is the pressure of the air outside. If the depression in the membrane is small, the direction of the net force on any element of area will make a very small angle with the vertical, so that the vertical component of the net force is to a good approximation equal numerically to the magnitude of the force.

If the membrane instead of being depressed statically, is set into vibration, the pressure of the air in the vessel will vary above and below atmospheric.* Let us assume that the air in

[^11]the vessel behaves as an ideal gas and that the time for one pressure cycle is short compared to the time for appreciable heat transfer to take place between the trapped air and its surroundings, i.e. assume that the compressions and expansions of the trapped air take place adiabatically. It follows that at every instant
$$
P V^{Y}=a \text { constant }
$$
where P and V are the pressure and volume of the trapped air at that instant, and γ is the ratio of the specific heat of air at constant pressure to that at constant volume. If the pressure changes are sufficiently small it follows that
$$
P-P_{0}=d P=-\frac{P_{0}}{V_{0}} d V
$$
where V_{0} is the volume of the trapped air when the membrane is at rest. At any instant when'the volume of the trapped air differs by $d V$ from the equilibrium value V_{0}, the vertical component of the force on any area dA due to the pressure differential will be
$$
\left(P-P_{0}\right) \Delta S=-\frac{P_{0}}{V_{0}} d V \Delta S
$$

If one writes down Newton's second law for the element of area ΔS, and includes this force along with the forces due to the tension one obtains after dividing by ΔS and passing to the limit, the following wave equation
$T\left[\frac{\partial^{2} z}{\partial r^{2}}+\frac{1}{r} \frac{\partial z}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \phi^{2}}\right]-\frac{\gamma p_{0}}{V_{0}} d V=\sigma \frac{\partial^{2} z}{\partial t^{2}}$
Any function describing the motion of the membane must be a solution of this equation. Suppose the membrane is vibrating so that its motion is described by the function $z(r, \emptyset, t)$. Then
at any t, for an element of area $r d r d \emptyset$ located at \dot{r}, \emptyset, the quantity $z(r, \emptyset, t) r d r d \emptyset$ is the volume of air in the column of length z and area $r d r d \emptyset$, shown in Fig. 5.12. This quantity is positive if $z>0$ and negative if $z<0$. Hence at time t, the change $d V$ of the volume of the air in the vessel is

$$
d V=\int_{0}^{2 \pi} \int_{0}^{a} z(r, \emptyset, t) r d r d \emptyset .
$$

If $z(r, \phi, t)$ is of the form $\psi(r, \phi) H(t)$, then

$$
d V=H(t) \int_{0}^{2 \pi} \int_{0}^{a} \psi(r, \emptyset) r d r d \emptyset=I_{0} H(t)
$$

where

$$
\begin{equation*}
I_{0}=\int_{0}^{n} \int_{0}^{a} \psi(r, \emptyset) r d r d \emptyset \tag{5.16}
\end{equation*}
$$

is a constant. Thus, if the motion is being described by a function $\psi(r, \emptyset) H(t)$, then since it must be a solution of the wave
equation one must have
$T\left[H \frac{\partial^{2} \psi}{\partial n^{2}}+\frac{1}{2} H \frac{\partial \psi}{\partial n}+\frac{1}{n^{2}} H \frac{\partial^{2} \psi}{\partial \phi^{2}}\right]-\frac{\gamma P_{s}}{V_{0}} I_{0} H=\sigma \psi \frac{d^{2} H}{d t^{2}}$
or
$\frac{c^{2}}{\psi}\left[\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \psi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}\right]-\frac{\gamma P_{0} I_{u}}{\sigma V_{0} \psi}=\frac{1}{H} \frac{d^{2} H}{d t^{2}}$

Since the quantity on the left is only a function of r and \emptyset and that on the left only a function of $t, b o t h$ quantities must equal the same constant, say $-\omega^{2}$. Thus

$$
\frac{d^{2} H}{d t^{2}}=-\omega^{2} H
$$

änd

$$
\frac{\partial^{2} \psi^{r}}{\partial r^{2}}+\frac{1}{r} \frac{\partial \psi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}+\psi_{0}^{2} \psi=\frac{V_{0} P_{0}}{\sigma V_{0} c^{2}}
$$

where $k=W / c$. The solution of the first of these equations is apparent. To find a solution to the second suppose for the moment the term, on the right, were zero, so the equation were simply

$$
\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \psi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial n^{2}}+k^{2} \psi=0
$$

Assuming a solution of this latter equation exists of the form $R(r) \Phi(\emptyset)$, one obtains on substituting and rearranging

$$
n^{2}\left[\frac{1}{R} \frac{d^{2} R}{d r^{2}}+\frac{1}{R R} \frac{d R}{d r}+k^{2}\right]=-\frac{1}{\Phi} \frac{d^{2} \phi}{d_{\phi}^{2}}
$$

But this is exactly equation (5.7) whose solution was found to be

$$
J_{m}(k r)\left[A_{m}^{\prime} \cos m \emptyset+B_{m}^{\prime} \sin m \emptyset\right] \quad m=0,1,2,3 \ldots
$$

When Since this is a solution of (5.17) when the righthand term is zero, and since the right-hand term is a constant it follows that solution of (5.17) exists of the form

$$
\psi(r, \phi)=J_{m}(k r)\left[A_{m}^{\prime} \cos m \emptyset+B_{m}^{\prime} \sin m \phi\right]+K
$$

where

$$
K=\frac{P_{0} I_{0}}{V_{0} c^{2}} \frac{l}{k^{2}}=\frac{\gamma P_{0} I_{0}}{\sigma \omega^{2} V_{0}}
$$

Thus solutions of the wave equation (5.14) exist of the form

$$
\begin{align*}
z(r, \phi t)= & \left\{J_{m}(k r)\left[A, \cos m \phi+B^{\prime} \cos m \phi\right]+\frac{\gamma_{P_{n}} I_{0}}{\sigma^{\prime} \omega^{2} \cdot V_{0}}\right\} \\
& \left.\left\{A_{m} \cos \omega t+B_{m} \sin \omega t\right)\right\} \tag{5.18}
\end{align*}
$$

- and for each integral value of m there is a solution for each positive value of ω. From (5.16) ,

$$
I_{0}=\int_{0}^{2 \pi} \int_{0}^{a}\left\{J_{m}(k r)\left[A_{m}^{\prime} \cos m \emptyset+B_{m}^{\prime} \cos m \phi\right]+\frac{\gamma P_{0} I_{o}}{\sigma \omega^{2} V_{0}}\right\} r d r d \emptyset
$$

$$
I_{0}=\left[\frac{1}{1-\frac{\gamma P_{0} \pi a^{2}}{\sigma \omega^{2} V_{0}}}\right]_{0}^{0} \int_{0}^{\sim i \|} \int_{m}^{a}(k r)\left[A_{m}^{\prime} \cos m \phi+B_{m}^{\prime} \sin m \phi\right] \int_{0} d r d \emptyset
$$

Unless $m \neq 0, I_{0}=0$ because the integral of sin m and cos m \emptyset from 0 to 2π is zero. $I f I_{0}=0$ then (5.18) reduces to (5.14). i.e. for $m \neq 0$, the harmonic solutions of the kettledrum are identical with the harmonic solutions of the free membrane. Since the boundary conditions are identical for both the kettledrumiand the free membrane, it follows that $m \neq 0$, the eigen frequencies and the eigen functions of the kettledrum and the free membrane are identical.

$$
\text { For } m=0
$$

$$
\left.\begin{array}{rl}
I & \left.\frac{2 \pi}{1-\frac{\gamma P_{0} \pi a^{2}}{\sigma \omega^{2} V_{0}}} \int_{0}^{a} J_{0}(k r) r d r\right] \\
& =\frac{2 \pi}{\sigma \omega_{0} V_{0}}
\end{array}\right]
$$

where the last result is taken from Table 5.l. Harmonic solutions of (5.15) for $m=0$ are
$z_{0}(r, t)=\left\{J_{0}(k r)+\frac{\gamma P_{n}}{\sigma \omega^{2} V_{0}}\left[\frac{2 \pi a^{2} J_{1}(k a)}{\left\{1-\frac{\gamma_{0} P_{0} \pi a^{2}}{\sigma \omega^{2} V_{0}}\right\} k a}\right]\right\}(A \cos \omega t+B \sin \omega t)$
The boundary condition requires that

$$
\left.J_{0}(k a)+\frac{\gamma P_{0}}{\sigma \omega^{2} V_{0}}\left[\frac{2 \pi a^{2} J_{1}(k a)}{\left\{1-\frac{P_{0} a^{2}}{{ }^{2} V_{0}}\right.} \mathrm{ka}\right\}\right]=0
$$

By using the identity $J_{o}(k a)+J_{2}(k a)=2_{1} J(k a) / k a t h e ~ a b o v e$ condition may be written

$$
\begin{equation*}
J_{0}(k a)=-\frac{J_{2}(k a)}{(k a)^{2}} \tag{5.19}
\end{equation*}
$$

where

$$
=\frac{P_{0} a^{4}}{c^{2} V_{0}} \quad \frac{P_{0} a^{4}}{T V_{0}}
$$

Finding the values of $k=\omega / c$ which satisfy (5.19) will yield the eigen frequencies of the kettledrum for $m=0$. Note that if $\propto=0$, these eigen frequencies are identical with those of the free membrane. If $\& \lll 1$, then one would expect that the eigen frequencies would differ only slightly from their values when $\mathcal{A}=0$. Note that o is made smaller by increasing the tension or by increasing the volume, as one might suspect since both such increases tend to make the tensile forces larger in relation to the pressure forces. The eigen frequencies determined from (5.19) for several numerical values of are shown in Table 5.3. Note that the fundamental frequency is the one most affected by $\propto \neq 0$.

Table 5.3

$$
\begin{array}{cccc}
\alpha=\frac{Y_{0} P_{0} a^{4}}{T V_{0}} & \underline{k_{1} a} & \underline{k_{2} a} & \underline{k_{3} a} \\
0 & 2.405 & 5.520 & 8.654 \\
\therefore 2 & 2.68 & 5.55 & 8.66 \\
10 & 3.485 & 5.67 & 8.69
\end{array}
$$

5.9 The Driven Membrane, Circular Boundary

If a loudspeaker is mounted some distance from a free membrane as in Fig. 5.13, and the speaker is driven at some frequency ω determined by the oscillator setting, then the sound wave emitted by the speaker will cause the pressure P on the top surface of the membrane to vary with time in the following manner

$$
P=P_{0}+P_{1} \cos \omega t
$$

where P_{0} is atmospheric pressure, and P_{1} is a constant which depends on how hard the speaker is being driven. If one assumes the pressure, $\underset{G}{ }$ is uniform over the sottomy of the membrane then the net force on any element of the area ΔS of the membrane due to the pressure is

$$
\left(P-P_{0}\right) \Delta S=P_{1} \Delta A \cos \omega t
$$

Adding this force to the tensile forces and writing down Newton's second law for the element of area ΔS one obtains after passing to the limit the following wave equation

$$
\begin{equation*}
c^{2}\left[\frac{\partial^{2} z}{\partial r^{2}}+\frac{1}{r} \frac{\partial_{z}}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \phi^{2}}\right]+\frac{P_{1}}{\sigma} \cos t=\frac{\partial^{2} z}{\partial t^{2}} \tag{5.20}
\end{equation*}
$$

Any function $z(r, \emptyset, t)$ describing the motion of the membrane under the above conditions must satisfy the wave equation. Now experimentally it is found that under the above conditions, the membane steady reaches a statedy state in which each portion is vibrating harmonically with the same frequency, w, as that of the oscillator. This suggests there must exist a solution of (5.20) of the form

$$
z(r, \emptyset, t)=\psi(r, \emptyset) \cos (\omega t+\beta)
$$

Substituting this in (5.18) one obtains after expanding the $\cos (\omega t+\beta) t e r m$, and rearranging

$$
\begin{aligned}
{\left[c ^ { 2 } \left\{\frac{\partial^{2} \psi}{\partial r^{2}}\right.\right.} & \left.\left.\left.+\frac{1}{n} \frac{\partial \psi}{\partial n}+\frac{1}{n^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}\right\}-\omega^{2} \psi\right\} \cos \beta+\frac{P_{1}}{\sigma}\right] \cos \omega t \\
& -\left[\left\{c^{2}\left[\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \psi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}\right]-\omega^{2} \psi \sin \beta\right] \sin \omega t=0\right.
\end{aligned}
$$

This condition must hold for all times, a requirement that can be satisfied if the coefficient $\sin \omega t$ and $\cos \omega \mathrm{t}$ is zero. Both coefficients will be zero if $\beta=0$ and

$$
\begin{equation*}
c^{2}\left[\frac{\partial 2 \psi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \psi}{\partial r}+\frac{1}{r} \frac{\partial 2 \psi}{\partial \emptyset^{2}}\right]-\omega^{2} \psi=-\frac{p_{1}}{\sigma} \tag{5.21}
\end{equation*}
$$

If
P_{1} / σ is zero, the above equation has the solution

$$
\psi(r, \phi)=J_{m}(k r)\left[A_{m}^{\prime} \cos m \emptyset+B_{m}^{\prime} \sin m \emptyset\right]
$$

where $m=0,1,2 \ldots$ Hence (5.19) has a solution

$$
\psi(r, \emptyset)=J_{m}(k r)\left[A_{m}^{\prime} \cos m \emptyset+B_{m}^{\prime} \sin m \emptyset\right]-\frac{P_{1}}{\sigma \omega^{2}}
$$

and there exists a solution of the wave equation (5.18) of the form

$$
z(r, \emptyset, t)=\left\{J_{m}(k r)\left[A_{m}^{\prime} \cos m \emptyset+B_{m}^{\prime} \sin m \emptyset\right]-\frac{P_{1}}{\sigma \omega^{2}}\right\} \cos \omega t
$$

If this is to satisfy the boundary condition that $z(a, \phi, t)=0$ one must have

$$
A_{m}^{\prime} \cos m \emptyset+B_{m}^{\prime} \sin m \emptyset=\frac{P_{1}}{\sigma \omega^{2} J_{m}(k a)}
$$

This can be satisfied only if m $=0$ and

$$
A_{0}^{\prime}=\frac{\mathrm{P}_{1}}{\sigma \omega^{2} J_{0}(\mathrm{ka})}
$$

so that a solution of (5.20) which satisfies the boundary condition becomes

$$
z(r, t)=\frac{P_{1}}{\sigma \omega^{2}}\left[\frac{J_{0}\left(\frac{\omega}{c} r\right)}{J_{0}\left(\frac{\omega}{c} a\right)}-1\right] \cos \omega t
$$

This expression predicts infinitely large amplitudes at those frequencies for which $J_{0}(w a / c)=0$. These frequencies correspond to the eigen frequencies for $m=0$. A more realistic wave equation for the driven membrane would include damping forces and the corresponding solutions would not show these discontinuities. However, one would still expect relatively large amplitudes to occur at or near the characteristic frequencies.

Fig. 5.3

(b)

Fig 5,4

$$
\begin{array}{ll}
x=X \cos \phi-Y \sin \phi & X=x \cos \phi+y \sin \phi \\
y=X \sin \phi+Y \cos \phi & Y=y \cos \phi-x \sin \phi
\end{array}
$$

Fig 5.5

Fig 5.6

(a)

(c)

(e)

(b)

(c)

(e)

(f)

Fig 5.9

(c)

(f)

(c)

(f)

$$
\text { Fig } 5.10
$$

a) Membrane atirest

Fig 5.11

Fig 5.12

a) time t with membrane in motion.

Fig 5,13

Table 5,2 Nodal Patterns ind Frequency. Relations
FOR TEN SMALLEST CHARACTERISTIC
frequencies of membrane with circular Boundary

Characteristic

Chapter VI. WAVES IN FLUIDS

For longitudinal waves in a thin rod, the displacement of any given element of the rod has only a single component, and hence a single coordinate, $\mathcal{\xi}$, is sufficient to describe this displacement. Similarly, the displacement of any element of membrane has only a single component and a single coordinate z is sufficient to describe this displacement. The displacement of an element of a fluid has in general three components. In addition, three coordinates, say x, y and z, are required to locate an element, as contrasted to two for an element of a membrane, and one for an element of a rod. Moreover, one often prefers to describe waves in fluids in terms of quantities other than those of the displacement. For these and other reasons, the description of waves in fluids is more complicated. None the less, the derivation of the wave equation follows along the same general lines; one uses the stress-strain relations and requires that the motion of each element be governed by Newton's second law. The type of waves which are propagated in fluid are called "compressional or dilational" or "longitudinal" or "sound" waves.

6.1 Wave Equation for Waves in Fluids

Consider a confined fluid as indicated in Fig. 6.la. By an element of the fluid (also referred to as a particle) one means a tiny portion of the fluid. To be more specific let the element located at point M ($x, y z$) to be the mass of fluid contained in a tiny cubical volume located at M, as indicated in Fig. 6.lb. If the external force $\underset{\text { ext }}{\overrightarrow{\mathrm{F}}}$ of Fig. 6.la is changed to a new value, then after equilibrium has been established, the element of fluid originally at M in general will be at some new location and the dimensions
of the element will have changed. Let the x, y and z components of the displacement undergone by point M be \mathcal{F}, \mathcal{F} and respectively. We assume that the displacement of point M is a suitable measure of the displacement of the element, and as we learned in Chapter 1 the change in shape of the element can be determined from $\frac{\partial J}{\partial \chi} \frac{\partial \xi}{\partial y}$ and $\frac{\hat{H}}{\hat{Z}}$ all evaluated at point M. In the static case the relation between a change in pressure and the change in the shape of the element was given by (1.6), namely

$$
\Delta P=-B\left[\frac{\partial \xi}{\partial \lambda}+\frac{\partial \gamma}{\partial y}+\frac{\partial \rho}{\partial z}\right]
$$

where B is the bulk modulus of the fluid.
If the force $\mathrm{F}_{\mathrm{m}} \mathrm{t}$ of Fig . 1.6 a is varied rapidly about some mean value, then in general the pressure at any instant of time will be different at different points of the fluid and at a point such as M will vary rapidly above and below some mean value P. If P^{\prime} is the (instantaneous) pressure at M at any time t one assumes that

$$
D^{\prime}-L^{\prime}=-B\left[\frac{\partial G}{\partial x}+\frac{d h}{\partial \gamma}+\frac{\lambda y}{\partial z}\right]
$$

i.e., that the static relationship holds at every instant of time. If one defines the acoustic pressure \odot at point as the difference between the instantaneous pressure \underline{P}^{\prime} and the mean or equilibrium pressure P , i.e..

$$
\begin{equation*}
P=P^{\prime}-P \tag{6,1}
\end{equation*}
$$

the above relationship becomes

$$
\begin{equation*}
P=-B\left[\frac{\partial \xi}{\partial x}+\frac{\partial \eta}{\partial y}+\frac{\partial \rho}{\partial z}\right] \tag{6.2}
\end{equation*}
$$

It is worth noting that the acoustic pressure is an algebraic quantity while P^{\prime} and P are not. Also, for most cases of interest, the pressure changes are sufficiently rapid so that the appropriate modulus is the adiabatic bulk modulus.

The forces acting on the element of fluid at any instant are those due to the pressure at the six faces of the small cubical volume containing the element. Considering only the x -equation of motion one has (see Fig. 6.2).

$$
\left[\underline{P}^{\prime}(x, y, z, t)-\underline{P}^{\prime}(x+\Delta x, y, z, t)\right] \Delta y \Delta z=\rho \Delta x \Delta y \Delta z \frac{\partial^{2} \xi}{\partial t^{2}}
$$

where $\underline{P}^{\prime}(x, y, z, t)$ and $P^{\prime}(x+\Delta x, y, z, t)$ are the instantaneous pressures at faces $A B C D$ and $E F G H$ respectively, and ρ is the density of fluid. Dividing by $\Delta x \Delta y \Delta z$ and passing to the limit one has

$$
-\frac{\partial P^{\prime}}{\partial X}=\rho \frac{\partial^{2} S}{\partial t^{2}}
$$

or in terms of the acoustic pressure

$$
\begin{equation*}
-\frac{\partial \partial}{\partial x}=\rho \frac{\partial^{2} \xi}{\partial t^{2}} \tag{6.3}
\end{equation*}
$$

Similarly for the y and z equations of motion one gets

$$
\begin{align*}
& -\frac{\partial \rho^{2}}{\partial y}=\rho \frac{\partial^{2} h}{\partial t^{2}} \\
& -\frac{\partial y}{\partial z}=\rho \frac{\partial y^{\circ}}{\partial t^{2}}
\end{align*}
$$

Differentiating (6.2) twice with respect to time and interchanging the order of differentiation on the right side one obtains

$$
\frac{\partial^{2} \rho}{\partial t^{2}}=-B\left[\frac{\partial}{\partial x}\left(\frac{\partial^{2} f}{\partial t^{2}}\right)+\frac{\partial}{\partial y}\left(\frac{\partial^{2} \eta}{\partial t^{2}}\right)+\frac{\alpha}{\partial z}\left(\frac{\partial^{2}}{\partial t^{2}}\right)\right]
$$

Substituting from (6.3) one obtains the wave equation

for waves in fluids.

6.2 Plane Waves, Velocity of Propagation

Although the wave equation (6.5) is different from any encountered thus far it should be eviden't that any function $(P(V)$ where $)=x \pm c t$ or $y \pm c t$ or $z \pm c t$ would satisfy it, since if $P(\sqrt{ })$) is a function only of one of the coordinates, the wave equation reduces to the form for waves on strings Such functions represent what are called plane waves. ^ function like

$$
P(x, t)=A e^{i(w t-k x)} \quad k=w / c
$$

for example represents a plane harmonic wave being propagated in the $+x$ direction. It is called a plane wave since the pressure is independent of y and z and hence at any instant of time is the same at all points of any plane perpendicular to the x-axis.

It is not difficult to show following the method used in section 3.3, that any function $P(\nu)$ i where

$$
\begin{equation*}
\nu=x \sin \theta \cos \phi+y \sin \theta \sin \phi+z \cos \theta \tag{6.6}
\end{equation*}
$$

will also satisfy the wave equation (6.5) for arbitrarily chosen values of θ and \emptyset. By choosing a new coordinate system, X, Y, Z such that the direction cosines of the +X -axis with respect to the $x y z \operatorname{coordinate} s y s t e m$ are $\sin \theta \cos \emptyset, \sin \theta \sin \emptyset$ and $\cos \theta$ respectively, as indicated in Fig. 6.3a, such functions can be written $P(X \subset C)$, and thus represent plane waves being propagated in the $+X$ direction with a velocity c. For example, the function

$$
\theta(x, y, t)=A_{\infty} e^{i[\omega t-k(x \cos \emptyset+y \sin \emptyset)]}
$$

where $k=\omega / c$ represents a plane harmonic wave being propagated in the $+X$ direction where the $+X-a x i s$ makes an angle with the $+x$-axis as indicated in Fig. 6.3b. Note that for such a wave, the acoustic pressure at any instant of time is the same at all
points of any plane perpendicular to the X-axis, and that these m this instance
planes are parallel to the z-axis.
The speed c at which any plane wave is propagated in any fluid is given by

$$
c=\sqrt{B / P}
$$

where B_{a} is the adiabatic bulk modulus, and ρ is the density of the fluid. For an ideal gas it can be shown that for small variations of the pressure about some equilibrium pressure P_{0}, the adiabatic bulk modulus

$$
B_{a}=\gamma P_{0}
$$

where γ is the ratio of the specific heat at constant P to that at constant volume. Thus for an ideal gas

$$
c=\sqrt{\frac{\gamma \mathrm{P}_{0}}{\rho}}
$$

This result correctly predicts the speeds of propagation of plane waves in real gases at ordinary pressures. Also for n moles of ideal gas of mass m, and molecular weight M

$$
\mathrm{PV}=\mathrm{nRT} ; \quad V=\frac{\mathrm{m}}{\rho}=\frac{\mathrm{nM}}{\rho} ; \quad \frac{\mathrm{P}}{\rho}=\frac{\mathrm{RT}}{\mathrm{M}}
$$

so that

$$
c=\sqrt{\frac{\gamma R T}{M}}=\text { const } \sqrt{T}
$$

Experimental results on real gases at ordinary pressures bear out this prediction that the speed of propagation is proportional to the square root of the absolute temperature. The speed of sound in air at $0^{\circ} \mathrm{C}$ is $331.6 \mathrm{~m} / \mathrm{sec}$ and this increases approximately $0.6 \mathrm{~m} / \mathrm{sec}$ per degree rise in temperature.

The velocity of propagation of plane waves in liquids is for the most part higher than that in gases, the velocity of sound in water being $1480 \mathrm{~m} / \mathrm{sec}$ at 20°, a figure about 4 times the speed of sound in air. The speed also increases with the temperature, although
there is no simple relationship as is the case with gases.
Table 61 gives the speed of sound in some of the more common gases and liquids.

6.3 Harmonic Solutions of the Wave Equation

Following the usual procedure for finding solutions to partial differential equations one looks for solutions of (6.5) of the form

$$
P(x, y, z, t)=X(x) Y(z) Z(z) H(t)
$$

Substituting into (6.5) leads to the requirement that for all x, y, z and t

$$
c^{2}\left[\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}+\frac{1}{Z} \frac{d^{2} Z}{d z^{2}}\right]=\frac{l}{H} \frac{d^{2} H}{d t^{2}}
$$

a condition that requires both sides equal a constant, say $-w^{2}$. One thus obtains

$$
\begin{equation*}
\frac{d^{2} H}{d t^{2}}=-w^{2} H \tag{6.7}
\end{equation*}
$$

and

$$
\frac{1}{X} \frac{d^{2} X}{d X^{2}}=-k^{2}-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}-\frac{1}{Z} \frac{d^{2} Z}{d z^{2}}
$$

where $k=w / c$. Once again this second equation can only be satisfied for all values of x, y and z if both sides equal a constant say $-\alpha^{2}$ which leads to

$$
\begin{align*}
& \frac{1}{X} \frac{d^{2} X}{d x^{2}}=-\alpha^{2} \\
& \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=-\left(k^{2}-\alpha^{2}\right)-\frac{1}{Z} \frac{d^{2} Z}{d z^{2}} \tag{6.8}
\end{align*}
$$

The second of these two equations can only be satisfied for all values of x and y only if both sides equal a constant say $-\beta^{2}$.

Thùs

$$
\begin{equation*}
\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=-\beta^{2} \tag{6.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{l}{z} \frac{d^{2} z}{d z^{2}}=-\left(k^{2}-\alpha^{2}-\beta^{2}\right) \tag{6.10}
\end{equation*}
$$

Solutions of (6.7), (6.8), (6.9) and (6.10) are readily apparent if $k^{2}>\alpha^{2}+\beta^{2}$. Setting $\gamma^{2}=k^{2}-\alpha^{2}-\beta^{2}$, a solution of the wave equation is

$$
\begin{array}{r}
P\left(x, y, z_{1} t\right)=\left(a_{1} \cos \alpha x+b_{1} \sin \alpha x\right)\left(a_{2} \cos \beta y+b_{2} \sin \beta y\right)\left(a_{3} \cos \gamma z+b_{3} \sin \gamma z\right) \\
\left(a_{4} \cos \omega t+b_{4} \sin \omega t\right) \tag{6.11}
\end{array}
$$

This is a solution for all positive values of α, β, and γ and \mathcal{W} and for arbitrary values of the constants $a_{1} \ldots a_{4}$, $b_{1} \ldots b_{4}$. Note that if such a function does describe the pressure wave in a fluid, the acoustic pressure at any point varies harmonically in time with a frequency W 。

Using trig identities the harmonic solution (6.11) can be recast in the following form

$$
\begin{align*}
P(x, y, z, t & =A\left\{\cos \left(\alpha x+\beta y+\gamma z-\omega t+\Omega_{1}\right)+\cos \left(\alpha x+\beta y+\gamma z+\omega t+\Omega_{2}\right)\right. \\
& +\cos \left(\phi x+\beta y-\gamma z-\omega t+\Omega_{3}\right)+\cos \left(\alpha x+\beta y-\gamma z+\omega t+\Lambda_{4}\right) \\
& +\cos \left(\alpha x-\beta y+\gamma z-\omega t+\Omega_{5}\right)+\cos \left(\alpha x-\beta y+\gamma z+\omega t+\Lambda_{6}\right) \\
& \left.+\cos \left(\alpha x-\beta y-\gamma z-\omega t+\Omega_{7}\right)+\cos \left(\alpha x-\beta y-\gamma z+\omega t+\Omega_{8}\right)\right\} \tag{6.12}
\end{align*}
$$

Each one of the eight terms in this expression is of the form $P(\mathcal{N})$ where \mathcal{V} is given by (6.6), and thus represents a plane harmonic wave being propagated in a direction determined by the values of α, β and γ. The direction of propagation is in general different for each wave. For example, the direction of propagation of the plane wave represented by the first term is along a line
whose direction cosines with respect to the x, y, z coordinate system are $\sin \theta \cos \emptyset, \sin \theta \sin \emptyset, \cos \theta$ where $\tan \theta=\sqrt{\alpha^{2}+\beta^{2}} / \gamma$ and $\tan \emptyset=\beta / \alpha$, while the direction of propagation of the plane wave represented by the third term is along a line whose direction $\operatorname{cosines}$ are $\sin \theta^{\prime} \cos \emptyset, \sin \theta^{\prime} \sin \emptyset, \cos \theta^{\prime}$ where $\theta^{\prime}=\pi-\theta$.

6.4 Boundary Conditions, Eigen Frequencies

Suppose the fluid is confined by a rigid vessel in the form of a box of length L_{x} width L_{y} and height L_{z} as indicated in Fig. 6.4. Any particle of fluid in contact with the face OMNQ is prevented by the wall from moving in the x direction, i.e.

$$
\mathcal{F}(0, y, z, t)=0
$$

and consequently

$$
\left.\frac{\partial^{2} \xi}{\partial t^{2}}\right|_{0, y, z, t}=0
$$

If this latter condition is satisfied it follows from (6.3) that

$$
\left.\frac{\partial p}{\partial x}\right|_{0, y, z, t}=0
$$

An harmonic solution of the form (6.10) can be made to satisfy this condition by setting $b_{l}=0$. Similarly at the face opposite DMNQ the particle displacement is zero, i.e.

$$
\zeta\left(L_{x}, y, z, t\right)=\left.0 \Rightarrow \frac{\partial P}{\partial x}\right|_{L_{x}, y, z, t}=0
$$

The harmonic solution (6.11), with $b_{1}=0$ will satisfy the above condition provided

$$
\begin{equation*}
\alpha=\eta_{x} \pi / L_{x} \quad \eta_{x}=0,1,2 \ldots \ldots \tag{6.13}
\end{equation*}
$$

Similarly the boundary conditions

$$
\eta_{(x, 0, z, t}=\left.0 \Rightarrow \frac{\partial P}{\partial y}\right|_{x, 0, z, t}=0
$$

$$
\eta(x, 0, z, t)=\left.0 \Rightarrow \frac{\partial \rho}{\partial y}\right|_{x, 0,3 t}=0
$$

can be met by a function of form (6.11) by choosing $b_{2}=0$ and

$$
\begin{equation*}
\beta=\frac{n_{B} \pi}{L_{y}} \quad n_{\mathrm{y}}=0,1,2,3 \ldots \tag{6.14}
\end{equation*}
$$

and the boundary conditions

$$
\begin{aligned}
& \rho(x, y, 0, t)=\left.0 \Longrightarrow \frac{\partial P}{\partial z}\right|_{x, y, 0, t}=0 \\
& \mathcal{J}\left(x, y, L_{z}, t\right)=\left.0 \Longrightarrow \frac{\partial P}{\partial z}\right|_{x, y, L_{3}, t}=0
\end{aligned}
$$

can be met by choosing $b_{2}=0$ and

$$
\begin{equation*}
\gamma=\sqrt{k^{2}-\left(\alpha^{2}+\beta^{2}\right)}=n_{z} \pi / L_{3} \quad n_{3}=0,1,2,3 \ldots \tag{6.15}
\end{equation*}
$$

Thus the harmonic solution
$P(x, y, z, t)=\cos \frac{n_{x} \pi}{L_{x}} x \cos \frac{n_{y} \pi}{L_{y}} y \cos \frac{n_{3} \pi}{L_{z}} z\left[A_{n_{x} n_{y} n_{3}} \cos \omega_{n_{x} n_{y} n_{3}} t+B_{n_{x} n_{y} n_{3}} \sin \omega_{n_{x} n_{y} n_{3}} t\right]$
where

$$
w_{n_{2} n_{y} n_{3}}=\pi c \sqrt{\left(\frac{n_{x}}{L_{x}}\right)^{2}+\left(\frac{n_{y}}{L_{y}}\right)^{2}+\left(\frac{n_{z}}{L_{3}}\right)^{2}} \quad \begin{align*}
& n_{x}=0,1,2,3 \tag{6.17}\\
& n_{y}=0,1,2,3 \\
& n_{z}
\end{align*}=0,1,2,3
$$

satisfies both the wave equation and the boundary conditions.
The latter expression which gives the eigen frequencies is determined from (6.15), (6.13) and (6.14). If L_{x} is the largest dimension of the box, the smallest of the eigen frequencies is

$$
W_{100}=\pi \mathrm{c} / \mathrm{L}_{\mathrm{x}} \quad \mathrm{f}_{100}=\mathrm{c} / 2 \mathrm{~L}_{\mathrm{x}}
$$

and the corresponding eigen function is

$$
\mathrm{P}_{100}(\mathrm{x}, \mathrm{t})=\cos \frac{\pi}{\mathrm{L}} \mathrm{x} \quad\left[\mathrm{~A} 100 \mathrm{Cos}^{\left.\cos \frac{\pi}{\mathrm{L}_{x}} t+\mathrm{B}_{100} \sin \frac{\pi \mathrm{c} \cdot}{\mathrm{~L}_{x}} t\right]}\right.
$$

$$
\rho_{100}(x, t)=C_{100} \cos \frac{\pi}{L_{x}} x\left[\cos \frac{\pi c}{L_{\pi}} t+\Omega_{100}\right]
$$

Thus if the system is vibrating in its fundamental mode, the acoustic pressure amplitude is a maximum, at $x=0$ and $x=L$ and is zero at $x=L / 2$. It should be evident that the above expression can be recast so as to represent two plane waves, both propagated with a velocity c, one in the $+x$ direction and one in the $-x$ direction. For either of the characteristic modes corresponding to ω_{010} and ω_{001}, the situation is similar: the pressure amplitude is maximum at the two opposite faces and zero in the middle, and the pressure variations can be thought of as being due to two plane waves moving in opposite directions. In fact for all characteristic modes for which only one of the $\mathrm{N}^{\prime} \mathrm{s}$ is different from zero, the pressure waves are plane waves. For a characteristic mode corresponding to $\eta_{x}=1, \eta_{y}=1, \eta_{z}=0$, the eigen function is

$$
P_{110}(x, y, t)=C_{110} \cos \frac{\pi}{L_{x}} x \cos \frac{\pi}{L_{y}} y \cos \left(\omega_{110} t+\Omega_{110}\right)
$$

where $\omega_{110}=\pi c \sqrt{\left(1 / L_{x}\right)^{2}+\left(1 / L_{y}^{2}\right)}$. This mode has nodal planes at $x=L_{x} / 2$ any $y=L_{y} / 2$. Higher modes have progressively more and more nodal planes.

The sum of all the characteristic modes

$$
\begin{aligned}
& \gamma(x, y, z, t)=\sum_{n_{x=0}}^{\infty} \sum_{n_{y}=0}^{\infty} \sum_{n_{y}=0}^{\infty} \cos \frac{n_{x} \pi}{L_{x}} x \cos \frac{n_{y} \pi}{L_{y}} y \\
& \cos \frac{n_{z} \pi}{L_{y}} z\left[A_{n_{x} n_{y} n_{z}} \cos \omega_{n_{x} n_{y} n_{y} t}+B n_{x} n_{y} n_{z} \sin \omega_{n_{x} n_{y} n_{z}} t\right]
\end{aligned}
$$

is also a solution satisfying the boundary conditions and can if desired by a proper choice of the constants $A_{n_{x}} \eta_{y} n_{z}$ and $\beta_{n_{x}} \eta_{y} n_{z}$ be made to fit a set of initial conditions.

6.5 Propagation in a Rectangular Wave Guide

If one of the dimensions, say L_{z} of the box of Fig. 6.4, is made indefinitely large, one has what is called a rectangular wave guide. The boundary conditions at the four walls of the guide are, of course, the same as they are for the closed box. It follows that

$$
\begin{aligned}
P(x, y, z, x) & =\left[a_{3} \cos \gamma z+b_{3} \operatorname{sen} \gamma z\right] \cos \frac{n_{x} \pi}{L_{x}} x \cos \frac{\eta_{y} \pi}{L_{y}} y[A \cos \omega t+B \sin \omega t] \\
& =\left(\cos (\gamma z+\delta) \cos \frac{\pi_{x} \pi}{L_{x}} x \cos \frac{n_{4} \pi}{L_{y}} y \cos (\omega t+\Omega)\right.
\end{aligned}
$$

where

$$
\gamma=\sqrt{\left(\frac{\omega_{6}}{c}\right)^{2}-\left(\frac{n_{x} \pi}{L_{x}}\right)^{2}+\left(\frac{n_{y} \pi}{L_{y}}\right)^{2}}
$$

is an harmonic solution of the wave equation satisfying the boundary conditions for any integer values of η_{x} and η_{y} and for any value W for which γ is real. For any fixed value of W there is a harmonic solution like (6.18) for each pair of values of n_{x} and n_{y} for which

$$
\begin{equation*}
\left(\frac{\omega}{c}\right)^{2}>\frac{n x^{2} \pi^{2}}{L x^{2}}+\frac{n y^{2} \pi^{2}}{L y^{2}} \tag{6.19}
\end{equation*}
$$

Suppose a harmonic solution of the form (6.18) did actually describe the acoustic pressure at all points of the guide, and one made measurements of the acoustic pressure at points along a line parallel to z-axis Since every point on this line has the same x and y coordinate, say x_{1} and y_{1}, for points on this line (6.18) could be recast in the form

$$
P\left(x_{1}, y_{1}, z, x\right)=\left[\frac{C}{2} \cos \frac{n_{2} \pi}{L_{x}} x_{1} \cos \frac{n_{y} \pi}{L_{y}} y_{1}\right][\cos (\gamma z-\omega t+\Omega-\delta)+\cos (\gamma z+\omega t+\Omega+\delta)]
$$

$$
=A^{\prime} \cos \gamma\left(z-\frac{\omega}{\gamma} t+\Omega-\delta\right)+A^{\prime} \cos \gamma\left(z+\frac{\omega}{\gamma} t+\Omega+\delta\right)
$$

where A^{\prime} is a constant standing for the first bracket.

From its appearance, one could argue that the first term represents a wave being propagated in the tz-direction and the second term a wave being propagated in the -z-direction, both waves being propagated with a speed

$$
c^{\prime}=\frac{\omega}{\gamma}=\frac{\omega}{\sqrt{\left(\frac{\omega}{c}\right)^{2}-\left(\frac{n_{x} \pi}{L_{x}}\right)^{2}-\left(\frac{n_{y} \pi}{L_{y}}\right)^{2}}}=\frac{c}{\sqrt{1-\left[\left(\frac{n_{x} \pi}{L_{x}}\right)^{2}+\left(\frac{n_{y} \pi}{L_{y}}\right)^{2}\right]\left(\frac{c \pi}{\omega}\right)^{2}}}
$$

One thus interprets harmonic solutions such as (6.18) as reprosenting waves being propagated along the guide. For any fixed value of W there is a solution of the form (6.18) for each pair of values of n_{x} and n_{y}, which satisfy the restriction (6.19). Each such solution is referred to as mode, the 00 mode being

$$
\begin{aligned}
P_{o o}(z, t) & =C_{00} \cos \left(\frac{\omega}{c} z+\delta\right) \cos (\omega t+\Omega) \\
& =\frac{C_{00}}{2}\left\{\cos k\left(z-c t+\frac{\delta-\Omega}{k}\right)+\cos k\left(z+c t+\frac{\delta+\Omega}{k}\right)\right\}
\end{aligned}
$$

This expression represents two plane waves, each propagated with a velocity $c=\sqrt{B / \rho}$. The 01 mode,

$$
P_{0,}(x, z, t)=C_{01} \cos \frac{\pi}{L} x \cos (\gamma z+\delta) \cos (\omega t+\Omega)
$$

is not a plane wave and its speed of propagation down the wave guide is

$$
c^{\prime}=c / \sqrt{1-\left(\frac{\pi c}{\omega L_{x}}\right)^{2}}
$$

Note that this velocity, which is referred to as the phase velocity is greater than c. All modes except the 00 mode have phase velocities greater than c, and none are plane waves.

In general, if an harmonic source (e.g. a loud speaker) of frequency W is located at some point of a wave guide, one expects that some time after the source is started, the acoustic pressure at any point in the guide will be given by some combination of the allowed modes. For any source frequency it is possible by virtue of condition (6.19) to choose the dimensions of the wave guide to insure that only the 00 mode will be present, and thus that the waves in the guide will be plane waves. As may be verified from (6.19) for a square wave : guide $0.15 \mathrm{~m} \times 0.15 \mathrm{~m}$ containing air at $20^{\circ} \mathrm{C}$ only the 00 mode will be present for all source frequencies below 1140 hertz. In many cases of interest, the dimensions of the wave guides are such that one has to deal only with plane waves.
6. 6 Particle Velocity, Specific Acoustic Impedance for Plane Waves

Plane harmonic waves in fluids are an important special case and the remainder of this chapter will deal exclusively with such waves. The real part of

$$
\begin{equation*}
M_{v}(x, t)=A_{N} e^{i^{(}(\omega t-k x)}+{\underset{m}{m}}^{e^{i(\omega t+k x)}} \tag{6.20}
\end{equation*}
$$

where $k=W / c$ represents two plane waves being propagated in the + and -x-directions respectively. If such waves existed in a fluid, one could find how the acoustic pressure at any point of the fluid varies with time merely by inserting the x-coordinate
of the point into (6.20). To find the displacement of the element of fluid (ie. the particle) located at that point as a function of time, one makes use of equations (6.3) and (6.4) which relate the components \mathcal{F}, η, and \mathcal{Y} of the particle displacement at any point to the pressure gradient at that point. For the wave reprosented by (6.20) one has from (6.3)

$$
\begin{aligned}
& -\frac{\partial P}{\partial x}=\rho \frac{\partial^{2} c}{\partial t^{2}} \\
& i k A e^{\lambda(\omega t-k x)}-i k B e^{i(\omega t+h x)}=P \frac{\partial^{2} \varphi}{\partial t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A}{\lambda \omega \rho c} e^{i(\omega t-k x)}-\frac{B}{\lambda \omega \rho c} e^{i(\omega t+h x)}=\xi(x, t)
\end{aligned}
$$

Since the pressure is not a function of y or z, η and \mathcal{Y} are 0 from (6.4). It turns out that the particle velocity rather than the particle displacement is the more widely used acoustic variable. The x, y, and z-components of the particle velocity are simply $\frac{\partial \xi}{\partial x}, \frac{\partial \eta}{\partial y}$ and $\frac{\partial \rho}{\partial z}$. . Letting $u=\partial \xi / \partial x$. be the $x-$ component of particle velocity one has for the pressure waves represented by (6.20)

$$
\begin{equation*}
\underline{u}(x, t)=\frac{A}{p c} e^{\nu(\omega t-b x)}-\frac{B_{m}}{p c} e^{\lambda(\omega t+b x)} \tag{6.21}
\end{equation*}
$$

The specific acoustic impedance $\underset{\sim}{z}$ at a point in a fluid is defined by

$$
z=\frac{Q}{u}
$$

where P is the acoustic pressure at the point and $\underset{\sim}{u}$ is the particle velocity at the point. If the pressure waves represented by (6.20) existed in a fluid then at any point

$$
z=\frac{A e^{i(\omega t-k x)} B_{m} e^{i(\omega t+k x)}}{\frac{A}{\rho_{c}} e^{i(\omega t-k x)}-\frac{B_{m}}{\rho_{c}} e^{i(\omega t+k x)}}=\rho c \frac{e^{-i k x} \frac{B_{n}}{A} e^{i k x}}{e^{-i k x}-\frac{B}{A} e^{i k x}}
$$

The specific acoustic impedance is thus a function of x. If $B=0$ then (6.20) represents a plane progressive wave and the specific acoustic impedance

$$
\underset{\sim}{z}=\rho c
$$

is a constant, the same at all points. This constant impedance $\rho c i s$ called the characteristic impedance of the medium. The units ${ }_{\wedge}$ specific acoustic impedance are $\mathrm{kg} \mathrm{sec} / \mathrm{m}^{2}$ or rayls.

6.6 Transmission and Reflection at a Boundary - Normal Incidence

A progressive plane wave incident on the boundary separating two media, in general, gives rise to a reflected and transmitted wave. After a steady state has been established there will exist in the first medium two waves, the incident and reflected waves. Only a single wave will exist in the second medium assuming it is infinite in extent. For the case of normal incidence illustrated in Fig. 6.5, if

$$
\begin{array}{ll}
P_{i}=A_{1} e^{i\left(\omega t-k_{1}, x\right)} & k_{1}=\omega / c_{1} \\
P_{r}=B_{m} e^{i\left(\omega t+k_{1} x\right)} & k_{2}=\omega / c_{2} \\
P_{t}=A_{m} e^{i\left(\omega t-k_{2} x\right)} &
\end{array}
$$

represents the incident, reflected and transmitted waves respectively, then at any point to the left of the boundary the acoustic pressure will be given by

$$
p_{L}=A_{1} e^{i\left(w t-A_{1}, x\right)} B_{2} e^{i\left(w t+\beta_{2}, x\right)}
$$

and on the right by

$$
\gamma_{k}=A_{2} e^{i\left(\omega t-k_{2} x\right)}
$$

The corresponding particle velocity at any point on the left is

$$
u_{L}=\frac{A_{1}}{P_{1} c_{1}} e^{i(\omega t-b x)}-\frac{B}{P_{1} c_{1}} e^{i\left(\omega t+b_{1} x\right)}
$$

and on the right

$$
u_{R}=\frac{A_{2}}{P_{2} c_{2}} e^{i\left(\omega t-k_{2} x\right)}
$$

At any interface it is generally assumed that the stress fin this instance the pressurefis continuous across the boundary. ide.
that the value of the pressure calculated approaching the boundtry from the left must equal the pressure calculated approaching the boundary from the right. It is also assumed that the particle displacement at right angles to the boundary must also be the same approaching the boundary from the left or right. If this were not true, egg. if the two particles labelled (1) and (2) in Fig. 6.5 did not move simultaneously to the right or left, a gap would appear in the boundary. If the particle displacement at right angles to the boundary is continuous, it follows that the component of particle velocity at right angles to the boundary is also continuous. Letting the interface be located at the origin of the coordinate system for convenience, the boundary conditions for the case illustrated in Fig. 6.5 yields

$$
\begin{aligned}
& A_{1}+B_{m}=A_{2} \\
& \frac{A_{1}}{P_{1} C_{1}}-\frac{B_{1}}{P_{1} C_{1}}=\frac{A_{2}}{P_{2} C_{2}}
\end{aligned}
$$

Fig 6.1

Fig 6.2

(a)

(b)

Fig 6,3

Fig 6,4

$$
\begin{aligned}
& \dot{x}_{D_{\text {mag }}}=\frac{F_{0} / p c s}{\sqrt{R_{1}\left(z_{2}\right)+\left[\bar{x}_{1}(2 h a)-c c_{1} k t\right]^{2}}} \cos (\omega t+\beta) \\
& P=A \cos k x e^{1 \omega t} \\
& { }_{m}^{u}=-\frac{1}{\rho c} A \operatorname{sen} d x e^{i \cot t} \\
& \dot{x}_{0}=\frac{F_{0} e^{n w^{t}}-\left.\mathbb{P}\right|_{2=-2} S}{z_{m}+z_{n}}=\left.\underline{u}\right|_{x_{i-L}} \\
& \frac{F_{0} e^{i \omega t}-A e^{{ }^{102} t} S^{\omega} k L L}{Z_{m}+Z_{n}}=+\frac{1}{p c} A \sin k L e^{\omega t} \\
& F_{0}-A s \cos h L=\left(Z_{m}+Z_{m}\right) \frac{1}{p c} A \operatorname{ank} L \\
& F_{0}=\left[\left(z_{m}+z_{n}\right) \frac{i}{p c} \operatorname{sen} k L+j \cos k L\right] A \\
& \underset{n}{A}=\frac{F_{0}}{\left(Z_{m}+z_{n}\right) \frac{1}{\rho c} \sin k L+S \cos k L} \\
& \left.p\right|_{x=0}=\frac{F_{0} e^{i \omega t}}{\left(Z_{m}+z_{n}\right) \frac{i}{p c} \operatorname{sen} k L+S \cos k L}
\end{aligned}
$$

Mrepution Z_{n} m coupithesen to Z_{3}

$$
\begin{aligned}
& m_{m}^{p}=\frac{F_{0} e^{i \omega^{t}}}{\operatorname{pcS}\left[R_{1}+A X_{1}\right] \frac{1}{R S} \sin k L+S \cos k L}=\frac{F_{0} e^{i \omega t}}{S\left\{\left[\cos _{1} k L-X_{1} \sin k L\right]+1 R_{1} \sin k L\right\}} \\
& \left.P_{\text {real }}\right|_{x=0}=\frac{F_{0}}{S \sqrt{\left(\cos k L-X_{1} \sin k L\right)^{2}+R_{1}^{2} \operatorname{con}^{2} k L}} \cos (\omega t-\alpha)
\end{aligned}
$$

过禾

 T +
$\vec{z}-30$

TABLE 5.1 BESSEL FUNCTIONS (FlIeST kind)

$$
\left.\begin{array}{l}
\begin{array}{l}
J_{n}=\frac{x^{n}}{2^{n} n!}\left\{1-\frac{x^{2}}{2 \cdot(2 n+2)}+\frac{x^{4}}{2 \cdot 4 \cdot(2 n+2)(2 n+4)}-\frac{x^{6}}{2 \cdot 4 \cdot 6 \cdot(2 n+2)(2 n+4)(2 n+6)}+\ldots\right\} \\
\frac{d}{d x}\left[J_{0}(x)\right]=-J_{1}(x) \quad \\
\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=0,1,2,3 \ldots \\
J_{0}^{n}(x)=1-\int_{0-1}(x) \\
J_{1}\left(x^{\prime}\right) d x^{2}
\end{array} \quad \frac{d}{d x}\left[J_{n}(x)\right]=\frac{1}{2}\left[J_{n-1}(x)-J_{n+1}(x)\right] \\
J_{n}(x)=\frac{1}{2 n}\left[x J_{n-1}(x)+x J_{n+1}(x)\right]
\end{array}\right\}
$$

When x es large $(x>10)$, approximate values of $J_{n}(x)$ may be computed from The semi-cinvergent series

$$
J_{n}(x)=\sqrt{\frac{2}{\pi x}}\left[P_{n} \cos \left\{\frac{(2 n+1) \pi}{4}-x\right\}+Q_{n} \sin \left\{\frac{(2 n+1) \pi}{4}-x\right\}\right] .
$$

where

$$
\begin{aligned}
& P_{n}=1-\frac{\left(4 n^{2}-1\right)\left(4 n^{2}-9\right)}{2!(8 x)^{2}}+\frac{\left(4 n^{2}-1\right)\left(4 n^{2}-9\right)\left(4 n^{2}-25\right)\left(4 n^{2}-44\right)}{4!(8 x)^{4}}-\cdots \\
& Q_{n}=\frac{4 n^{2}-1}{8 x}-\frac{\left(4 n^{2}-1\right)\left(4 n^{2}-4\right)\left(4 n^{2}-25\right)}{3!(8 x)^{3}}+\cdots
\end{aligned}
$$

Arguments for which Bēsel'Functions are Zero

$$
\begin{array}{rlrl}
L & =52.7 \mathrm{~cm} & a=.0182 \mathrm{~m} \\
& =.0527 \mathrm{~m} & C=343 \mathrm{~m} / \mathrm{sec}
\end{array}
$$

find the phase difference between $x_{1}(t)$ and $x_{2}(t)$ and the ratio of the amplitude of $x_{1}(t)$ to that of $x_{2}(t)$.
(2.7) If

$$
\text { , } P_{m}=A_{1} e^{i \omega t} \quad ; P_{m}=B_{1} e^{1 \omega t} \quad ; P_{2}=A_{2} e^{i \omega t}
$$

and

$$
\begin{aligned}
& P_{n}+P_{n}=P_{x} \\
& P_{2}-P_{2}=2 P_{x}
\end{aligned}
$$

find the phase difference between $P_{i}(t)$ and $P_{r}(t)$ and the ratio of the amplitude of $P_{r}(t)$ and that of $P_{i}(t)$.
2.8 The solution of the dampled harmonic oscillator has the form

$$
x(t)=A e^{-\alpha t} \cos \left(\omega_{0} t+\phi\right)
$$

This function of t 'has a series of maxima and minima. The condition that $x(t)$ have a maximum or minimum is that $\frac{d x}{d t}=0$, i.e. the maxima and minima occur at those times when the velocity is zero. Show that the velocity is zero at times t which satisfy the condition

$$
\tan \left(\omega_{0} t+\phi\right)=-\frac{\alpha}{\omega_{0}} \Rightarrow t=\frac{\tan ^{-1}\left(-\frac{\alpha}{\omega_{0}}\right)-\phi}{\omega_{0}}
$$

If ψ_{1} is the smallest positive angle whose tangent is (α / w_{p}) then every angle

$$
\psi_{n}=\psi_{1}+\pi \pi
$$

$$
n=0,1,2,3 \ldots
$$

will also have a tangent oqual to ($-\alpha / u_{0}$), Thus the values of time x_{n} for which (i) is satisfied are

$$
t_{n}=\frac{\psi_{1}+n \pi-\phi}{w_{j}} \quad n=0,1,2,3 \cdots
$$

1. Show that the ratio of two successive maxima (or two successive minima) of $x(t)$ is constant and equal to $e^{\frac{2 \pi n}{3}}$
2.9 Show that it is possible to express the coefficients a_{3}, a_{4}, $a_{5} \ldots$ in terms of a_{0} and a_{1} so that the series

$$
x(x)=\sum_{n=0}^{\infty} a_{n} t^{n}=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\cdots
$$

will be a solution of

$$
\ddot{x}+2 a \dot{x}+w_{0}^{2} x=0
$$

the equation of motion of the damped harmonic oscillator.
2.10 A mass m on the end of a spring of force constant K is held in equilibrium by a force F_{o}, equal in magnitude to the gravitational force mg . Find the subsequent motion of the mass if the force F_{0} is suddenly removed. Assume a damping force proportional to velocity and neglect the mass of the spring.

2.11 A simple harmonic oscillator of mass m, spring constant K is set in motion by a sharp blow. Assume the impulse of the blow is I_{0}. Find the subsequent motion of the oscillator assuming a damping force proportional to the velocity.
(2.12 A certain damped harmonic oscillator is found to have a period $\because \pi_{0}$ of $1 / 2 \mathrm{sec}$ and an $\alpha=-R / 2 m$ of $0.1 \mathrm{sec}^{-1}$. If this oscillator were driven by a force $F_{o} \cos w t$, at what frequency w would resonance occur?
2.13 A drying force $F_{o} \cos \omega t$ is applied to damped harmonic oscillator at a time $t=0$ when the oscillator is at rest in its equilibrium position. Describe the subsequent motion of the oscillator.
(2.14 $)$ Show that

$$
\frac{1}{\pi} \int_{0}^{4} \cos ^{2}(\omega t+k x+4) d t=\frac{1}{\pi} \int_{0}^{\pi} \sin ^{2}(\cos x+k x+a) d t=\frac{1}{2}
$$

and

$$
\frac{1}{\pi} \int_{0}^{\pi} \cos (\omega t+k y) \cos (\omega x+k x+\theta) d t=\cos \theta / 2
$$

where $\omega=2 \pi / \gamma$ and $\mathcal{R}, 4, x$ and θ are arbitrary constants.
2.15 In the steady state the motion of an harmonic oscillator driven by a force $F_{0} \cos \omega t$ is given by

$$
\begin{array}{ll}
x=\frac{F_{m}}{Z_{m}} \sin (u x-\theta) & z_{m}=\sqrt{k^{2}+(\omega m-k / \theta)} \\
\dot{x}=\frac{F_{0}}{z_{m}} \cos (\omega t-\theta) & \tan \theta=\frac{\omega n-k / \omega}{R}
\end{array}
$$

For obvious reasons the quantity $F_{0} / w Z_{m}$ is referred to as the displacement amplitude, while the quantity F_{o} / Z_{m} is referred to as the velocity amplitude. If the angular frequency ω of the driving force is varied keeping F_{o} , constant, and for each frequency the displacement and velocity amplitudes are noted, find in terms of m, K and R, the angular frequency at which the displacement amplitude would be largest. Find the frequency at which the velocity amplitude would be largest.
(2.16) It is possible to apply a force of the form $F_{o} \cos \omega t$ to an harmonic oscillator by means of the arrangement shown in the figure (i). The end P of the spring is fastened by a fay to a peg on a wheel mounted on the shaft of a motor which rotates with an adustable angular velocity ω. Naw varme boint P is forced to move (very nearly) with simple harmonj.c motion, so that its motion is given by $x=B$ cos w t. Fig (ii) shows the system at some instant when the spring is unstretched and point P is at the midpoint of its motion. Fig (iii) shows the system at some general time t. Isolate the mass m in this last figure, draw in the force exerted by the spring and assume an additional damping force Rx. Write down the equation of motion and show that this has the form

$$
m \dot{x}+\mathrm{R} \dot{x}+\bar{y} x=E \cos (u) t
$$

How is F_{0} related to B. Let A_{l} be the displacement amplitude of the system when the system is at resonance, i.e. when $w=\sqrt{R / m} \quad$ Show that the Q of this system is equal to $\mathrm{A}_{1} / \mathrm{B}$.

(i)
$1-x-31$

2.17. An harmonic oscillator is being driven by a driving force
$F_{o} \cos \omega t$ at such a frequency that

$$
\begin{aligned}
\omega m & =3 \operatorname{kg} / \mathrm{se} \\
K / \omega & =5 \operatorname{kg} / \sec \\
R & =2 \operatorname{kg} / \mathrm{ce}
\end{aligned}
$$

Is the driving frequency smaller than, equal to, or greater than the resonant frequency? What is the phase difference between the driving force and the displacement x ? Which
leads? What is the mechanical impedance Z_{m} of the oscillator at this frequency? What is the Q of this mechanical system?
2.18 In the steady state, is the rate at which the driving force supplies energy to a damped harmonic oscillator equal at every instant to the rate energy is being dissipated? Is the total mechanical energy (potential plus kinetic) of a driven damped oscillator a constant in the steady state?

8
8
8
8

ine

$$
\begin{aligned}
& n \\
& i \\
& r
\end{aligned}
$$

RmOMFWR

 Satass

$$
y_{p}=9 \quad\left[x^{*}=4\right\}
$$

 the ritgre.

 Bataky

 (e) $\frac{2}{x}=2 p 6$

 74 *

 xepatesented by

$$
y_{n}=A a^{n} \operatorname{man}^{2}\left(n+b^{+}+\right)^{1 / t}
$$

$$
\begin{aligned}
& \text { th } \\
& \text { BI. } 0 \sin A x e^{\cot t}
\end{aligned}
$$

$$
\begin{aligned}
& \left.U_{t}\right|_{x=-1}=\left.y_{n=0}\right|_{n=-4} \\
& \left.40 \quad \frac{d t_{d}}{d h^{n}}\right|_{x-\infty}=\left.\frac{d y}{d t}\right|_{x=-2}
\end{aligned}
$$

4)

 $\sqrt{8} \quad 10$

(

m

$$
f+\frac{x}{x+3}+\infty
$$

\&
O


```
                                    |
```



```
wn woty pobnt in GM, sme.
```


$$
1 \sim+\infty
$$

Problems for Chapter VI

1. Show that $P(\nabla)$ where $\vartheta=x \sin \theta \cos \emptyset+y \sin \theta \sin \emptyset$ $+z \cos \theta$ is a solution of the wave equation 6.5 for arbitrary values of θ and \emptyset.
(2. The density P at a point in any medium is defined as the ratio of the mass contained in a tiny volume surrounding the point to this tiny volume. A particle of a fluid is thought of as a fixed mass of fluid which occupies some tiny volume V when the pressure is P. If the pressure increases to some value P^{\prime}, the volume occupied by the fixed mass will shrink to a value V^{\prime} and consequently the density of the fluid at the point where the particle is located will change to a value ρ^{\prime}. When an harmonic wave exists in a fluid the density ρ^{\prime} varies slightly above and below some mean value ρ and the quantity $S=\left(\rho^{\prime}-\rho\right) / \rho$ is called the condensation at the point. The density ρ^{\prime} at any instant is only slightly different. from ρ and $s \ll 1$. Show that the acoustic pressure at a point and the condensation at a point are related by $\mathcal{P}=B_{a} S$ where B_{a} is the adiabatic bulk modulus.

The stress-strain relation (6.2) can be written in vector notation as

$$
\begin{equation*}
\hat{B}=-B_{a} \operatorname{div} \rightarrow \tag{i}
\end{equation*}
$$

where \vec{s} is the particle displacement vector with components $\xi . \eta, \mathcal{S}$. Similarly the three equations of (6.3) and (6.4) can be written as the single vector equation

$$
\begin{equation*}
-\overrightarrow{g r a d} \hat{\rho}=\rho \frac{\partial^{2} \vec{s}}{\partial t^{2}} \tag{ii}
\end{equation*}
$$

(3. (continued)

By taking the divergence of both sides of this equation and substituting from (i) one obtains the wave equation

$$
\mathrm{c}^{2} \nabla^{2} \mathrm{P}=\frac{\partial^{2} \mathrm{P}}{\partial \mathrm{t}^{2}} \quad \mathrm{c}=\sqrt{\mathrm{B}_{\mathrm{l}} / \rho}
$$

where $\nabla 2^{2}=\overrightarrow{g r d d} d i v{ }^{t}$ In cylindrical coordinates the gradient of any scalar point function such as P is

$$
\overrightarrow{g r a d} P=\frac{\partial \phi}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial \phi}{\partial \varnothing} \hat{\phi}+\frac{\partial}{\partial \gamma} \hat{\phi}
$$

where $\hat{r}, \hat{\phi}$ and $\hat{\ell}$ are unit vectors in the $r, ~ \emptyset$ and $z-$ direction respectively. Also for any vector \vec{E} whose r, \emptyset and z components are E_{n}, E_{\emptyset}, and E_{z} respectively \bar{y}

$$
\operatorname{div} \vec{E}=\frac{\partial E r}{\partial r}+\frac{E r}{r}+\frac{1}{r} \frac{\partial E \phi}{\partial \emptyset}+\frac{\partial E z}{\partial z}
$$

Using these expressions write down the wave equation in cylindrical coordinates.
4. Given $\not \subset=3 m^{-1}, \beta=4 m^{-1}, \gamma=5 m^{-1}$. Find the directions of propagation of the waves represented by each of the eight terms of (6.12).
$x<2$ Suppose a gas confined in a rigid box of dimensions L_{x}, L_{y}, L_{z}. is vibrating in a characteristic mode for which $n_{x}=1, n_{y}=1$, $n_{z}=1$. At any point of the box the acoustic pressure varies harmonically with an amplitude A, which in general is different at different points. If one measured this amplitude at various points with a microphone, at which points would one find the largest amplitude?

6. Find the positions of the nodal planes for a fluid confined -in a rigid box of dimensions L_{x}, L_{y}, L_{z} and vibrating in a characteristic mode for which $n_{x}=2, n_{y}=1, n_{3}=1$.
7. The wave equation in cylindrical coordinates is

$$
C_{2}^{2}\left[\frac{\partial^{2} \theta}{\partial r^{2}}+\frac{1}{r} \frac{\partial \theta}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} p}{\partial \phi^{2}}+\frac{\partial^{2} p}{\partial z^{2}}\right]=\frac{\partial^{2} p}{\partial t^{2}}
$$

(i) Show by using the separation of variables approach that one can obtain an harmonic solution of the form
$\theta(r, \phi, z)=J_{m}\left(\sqrt{k^{2}-A^{2}} r_{2}\right)\left[A_{1} \cos m \phi+B, \sin m \phi\right]\left[A_{2} \cos \alpha z+B_{2} \sin 4 \xi\right]$.
$\left[A_{3} \cos \omega t+B_{3} \operatorname{sim} \omega t\right]$
where m is any positive integer including zero, and $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3} \propto$ and W are arbitrary (subject to the restriction that $\mathcal{R}^{2}-q^{2}>0$). Here $k=\frac{w}{c}$, and $J_{m}\left(\sqrt{k^{2}-Q^{2}} r\right)$ is Bessel's function of order m.
(ii) Consider a cylindrical cavity of length L and radius a. If the walls of this cavity are rigid so that the component of the particle displacement perpendicular

7. (continued)

to the walls must be zero, show that the harmonic - solution will satisfy the boundary conditions at $\varnothing=0$ and $z=L$ only if

$$
B_{2}=0 \quad \text { and } \quad \alpha=\frac{n \pi}{L} \quad n=0,1,2,3 \ldots
$$

For any pair of allowed values of m and n there will be an harmonic solution satisfying all boundary condoions only for certain special values of ω (and $f=\omega / 2 \pi$).

Find some of these eigen frequencies for the following two cases (1) $m=0, n=0$; (2) $m=1, n=1$.
〉.
For any wave guide, the cutoff frequency for any mode is the lowest frequency for which the mode can exist in the guide. For air at $20^{\circ} \mathrm{C}$ and a rectangular wave guide of dimensions $L_{x}=0.05 m, L_{y}=0.10 m$ what is the cutoff frequency for the mode characterized by $n_{x}=1, n_{y}=1$?
9. Show that for normal incidence the requirement that the specific acoustic impedance $\underset{\sim}{z}=\underset{\sim}{P} / \underset{\sim}{u}$ be continuous across a boundary separating the fluids leads to

$$
\frac{B_{1}}{A_{1}}=\frac{P_{2} c_{2} / P_{c_{1}}-1}{P_{2} c_{2} / P_{1} c_{1}+1}
$$

for the ratio of the amplitude of the reflected wave to that of the incident wave. Determine A_{2} / A_{1} from the above ratio and the requirement that the average rate energy is brought to the surface by the incident wave is equal to that carried away by the reflected and refracted waves. Calculate the sound power transmission coefficient.

When as in the figure for problem 9, a plane wave is incident on a boundary separating two fluids, the reflected wave is said to suffer a phase shift of 180° if the harmonic varations of the pressure produced by the incident and reflected waves separately are 180° out of phase at the boundary. Under what conditions will such a phase shift occur? When it does occur, is there also a phase difference of 180° between the particle velocity at the bound any due to the incident wave, and the particle velouty at the brendesg due to the refinotad wave alone?

sydth tob

$$
\begin{aligned}
& 1 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } \\
& \text { (8) }
\end{aligned}
$$

$=$

Bathontes tha gete oqmathon

$$
\sqrt{24}, x^{2}+\frac{h^{2}}{\sqrt{2}}
$$

ctathe whetren as

$$
\begin{aligned}
& 7.4 \\
& 74 \\
& 48 \\
& 46 \\
& 476
\end{aligned}
$$

$$
\frac{d^{2} R}{d_{2}^{2}}+\frac{1}{R^{2}} d_{R}^{2}+\left(d_{2}^{2}-\frac{d_{2}^{2}}{R^{2}}\right) a_{0}=0
$$

$$
\hat{A} \cdot d=\int_{5} \operatorname{mon} A \cdot \hat{A}
$$

 thater

$$
d E=\int_{V_{0}}^{\operatorname{P} d V}-\int_{V_{0}}^{\infty} P d V=\int_{V}^{V_{0}} P d V
$$

$$
d E=\left[P_{0}+\frac{1}{2}\right]\left[V_{0}-V\right]
$$

$$
a \varepsilon_{a v}=\left\{\frac{Q}{2}\left[V_{0}-V\right]\right\}_{a v}
$$

$$
d E_{o w}=\left(\frac{Q^{2} V_{0}}{2 B}\right)
$$

ar

$$
\frac{d b_{\operatorname{sen}}}{b_{0}}=\left(\frac{0^{2}}{2 d}\right)_{a}
$$

$$
\frac{d E_{0}}{V_{0}}=\frac{A^{2}}{B_{0}}=\frac{A^{2}}{A B^{2}}
$$

$$
\left(\frac{p^{2}}{2 B_{Q}}\right)_{\alpha}+\frac{1}{2} p u^{2}
$$

 thonal bheryy orex and ghay what hom

$$
J=\frac{A^{4}}{2 p e}
$$

0

 wowes.

 pusergro.
 phe separate waves. the atyles

 bamuday.

$$
Q=A e^{i(\omega t-k x)}+\mathrm{B}_{\mathrm{m}} e^{A(\omega t+k x)}
$$

 patson th tached.

b) $I=\frac{p^{2}}{2_{0}}$
$\Rightarrow 19+\sqrt{2} p_{0} C$

$$
\begin{aligned}
& =\frac{p}{p c k r} \sqrt{1+k^{2} r^{2}} \\
& =\frac{p}{p_{\infty}} \\
& =\sqrt{1+\left(\frac{u}{R}\right)^{2}}
\end{aligned}
$$

$$
=\frac{p}{2 \pi \rho r} \sqrt{1+(\omega)^{2}\left(r^{2}\right)}
$$

$=(1.21)(2 \pi)(400)(0.5)\left[1+\left[\frac{2 \pi(400)}{343(0.5}\right]^{2 / 2}\right.$

$$
\cdots \quad 4 \cdot 05 \times 10^{-3} \frac{5}{5}
$$

$$
\begin{aligned}
& 4 \rho_{0} 1.2 \frac{15}{n+2} \\
& \Rightarrow 1=\sqrt{2}(0.319) 343)(1.21)^{1 \times 10^{3}} \\
& =\sqrt{2,60 \times 1 / 2} 10^{+1} \\
& \text { (5, (N) } \\
& 1+42 \cdot \frac{n}{2+n}
\end{aligned}
$$

7-13) $\frac{\mid}{\frac{10.3 \cdots}{1}} \quad \omega=2 \pi 7 \times 3000$

$$
=0.465,0.553
$$

$$
\begin{aligned}
& k q=\infty \cdot 24 \\
& (\alpha) \quad \theta=0
\end{aligned}
$$

ON AK1S

$$
\cos +\left[\frac{2 y_{1}(k a)}{1 \cos }\right]=2 \operatorname{const}
$$

D. brat asan $y=\frac{1}{2}$

Prat Na muke Win

$$
\begin{aligned}
& \text { const }\left[\frac{2,1(k a n i n g)}{k a n+n \theta}\right]=200 N S T \\
& 42
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2 \pi}{\lambda} a=a k=a \frac{\omega}{C}=\frac{(0.15)(2 \pi)(3000)}{343}=8.24 \\
& \Rightarrow \sin \theta=\frac{3.53}{3.24}, \frac{7.02}{8.24},\left(\frac{10.17}{8.24}, \cdots \text { No soluntons! }\right)
\end{aligned}
$$

7-8) $U_{5}=U_{0} e^{\text {jut }}$

(a)ra, THE SPMERE'S MOTION is that OF

$$
\begin{aligned}
& \text { THE A COUSTIC WAVE: } \\
& \Rightarrow \quad A_{0} e^{-k a}=U_{0} \\
& \text { on } A=U_{0} 0 z_{a} e^{-d k a}
\end{aligned}
$$

whtre Z_{a} = specific acougtie impeance of a sanercar wave

$$
\begin{aligned}
z_{a} & =\left.p_{0} c \frac{k r}{1+(k r)^{2}}[k r+j]\right|_{m_{0}}=p c \frac{h_{a}}{1+(k a)^{2}}\left[a_{a+} j\right] \\
\Rightarrow A & =U_{0} \frac{a k a}{1+\left(k \alpha^{2}\right.}\left[k k_{+j}\right] e^{-j k a}
\end{aligned}
$$

$$
P \text { - PRESSURE GNALUTUNE }
$$

$$
=\frac{a^{k} k u_{0}}{\sqrt{1+\left(k a_{0}\right)^{2}} n}, k=\omega_{c}
$$

IEspherical wave mtensity

$$
\begin{aligned}
& =\frac{p^{2}}{2 p_{0} c} \\
& =\frac{1}{20_{0}}\left[\frac{\left(a k U_{0}\right)^{2}}{1+(k 0)^{2}}\right] \frac{1}{n} \Rightarrow k=\omega / c
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(k a)^{2}(k a \cos \theta)}\left[\begin{array}{l}
-k a \sin ^{-k} \theta \\
(k a)^{2}-(k a)^{2} \sin ^{2} \theta
\end{array}\right]\left[2 J_{1}(v)-y f_{2}(v)\right] \\
& \left.+\left[(k a)^{2}-(k a)^{2} \sin ^{2} v\right)\right]^{1 / 2}\left[\frac{\left.2 \sqrt{1}^{2} v\right)}{v}-2 f_{2}(v)+V J_{3}(v)\right] \\
& =\frac{1}{k o} \cos \theta \frac{k a \sin \theta}{k a \sqrt{1-\sin ^{2} \theta}}\left[2 J_{1}(v)-v J_{2}(v)\right] \\
& +k a\left[1-\sin ^{2} \theta\right]^{1 / 2}\left[\frac{2 j_{1}(v)}{v}=2 u_{2}(v)+v J_{g}(v)\right] \\
& =\frac{-1}{k a} \cos \theta \tan \theta\left[2 d_{1}(v) \cdot v s 2(v)\right] \\
& +k a \cos \theta\left[\frac{2 \nu_{1}(v)}{v}-2 J_{2}(v)+v j_{2}(v)\right] \\
& =\frac{-1}{k a} \sin \theta\left[2 J_{1}(v)-v J_{2}(v)\right] \\
& +1<a \cos \theta \int^{2 j_{1}(v)}=2 d_{2}(v)+V J_{3}(v) \\
& =\frac{1}{k a} \sin \theta\left[2 J_{1}(k a \sin \theta)-k a \sin \theta J_{2}(k a \sin \theta)\right] \\
& +1 \cos \theta\left[\frac{1}{k a \sin \theta} \quad J_{1}(k a \sin \theta)-2 J_{2}(k a \sin \theta)\right. \\
& \text { - kamino } \left.V_{3}(k a A M O)\right] \\
& =\frac{-2 \sin \theta}{k a} J_{1}(k a \sin \theta)+\sin ^{2} \theta J_{2}(k a \sin \theta) \\
& +\cot \theta J_{1}(k a \min \theta)-2 k a c o z \theta J_{2}(k a \min O) \\
& +(k a)^{2} \sin \theta \cos \theta J 3(k a \sin \theta) \\
& =\left[\cot \theta-\frac{2 \sin \theta}{k a}\right] J_{1}(k a \sin \theta) \\
& +\left[\sin ^{2} \theta-2 k a \cos \theta\right] d_{2}(k a \operatorname{kit} \theta) \\
& +\left[(k Q)^{2} \operatorname{An} \theta \cos \theta\right] \operatorname{J}_{3}(k a \sin \theta)
\end{aligned}
$$

$$
\begin{aligned}
& \rho(r, \theta, t)=\frac{A_{1}}{r} e^{i(\omega t-k r)}\left[\frac{2 j,(k a \sin \theta)}{k a \sin \theta}\right] \Rightarrow \frac{\operatorname{sp}}{S \phi}=\frac{b^{2} \phi^{2}}{S}=0
\end{aligned}
$$

$$
\begin{aligned}
& c^{2}\left[\frac{\delta^{2} r^{2}}{5 r^{2}}+\frac{s^{2}}{r}+\frac{1}{r^{2}} \frac{s^{2} \theta}{5} \theta^{2}+\frac{\operatorname{cose} \theta}{\sin \theta}+\frac{1}{r^{2} \sin \theta} \delta \phi^{2}\right]=5 t^{2} \\
& \frac{\delta \theta(r, \phi, \theta)}{\delta \theta}=\frac{2 A}{r} e^{i(\omega t-k r)} \frac{d}{d \theta}\left[\begin{array}{c}
1,(k a \sin \theta) \\
k a \sin \theta
\end{array}\right] \\
& \text { LET } V=k a \sin \theta \Rightarrow d V=16 a \cot \theta \\
& \Rightarrow \frac{d}{d \theta}\left[\frac{v(k a \sin \theta)}{k a \sin \theta}\right]=\frac{d v}{d \theta} \frac{d}{d v}\left[\frac{J_{1}(v)}{v}\right] \\
& =d v\left[\frac{v \frac{d J_{1}(v)}{d v}+\nu_{1}(v)}{v^{2}}\right] \\
& =\frac{d v}{d \theta}\left[\frac{\left\{J_{1}(v)-v J_{2}(v)\right\}+J_{1}(v)}{v^{2}}\right] \\
& =k a \cos \theta\left[\frac{2 J_{1}(k a \sin \theta)-k a \sin \theta J_{2}(k a \sin \theta)}{(k a \sin \theta)^{2}}\right] \\
& =2 J_{1}(k a \sin \theta)-k a \sin \theta d_{2}\left(k_{a} \sin \theta\right) \\
& k a \tan \theta \\
& \frac{d^{2}}{d \theta^{2}}\left[\frac{J_{1}(k a \sin \theta)}{k a \sin \theta}\right]=\frac{d}{d \theta}\left[\frac{2 J_{1}(k a \sin \theta)-k a \sin \theta J_{2}(k a \sin \theta)}{k a \tan \theta}\right] \\
& =\frac{d V}{d \theta} \frac{d}{d V}\left[\frac{2 J_{1}(V)-V J_{2}(V)}{\left.(k q)^{2}\right)} \sqrt{V^{2}+(k q)^{2}}\right] \\
& =\frac{1}{(k a)^{2}} \frac{d V}{d \theta} \frac{d}{d v}\left[\left(-v^{2}+k^{2}\right)^{2}\right)^{\left.\frac{1}{2}\left\{2 J_{1}(v)-V J_{2}(v)\right\}\right]} \\
& \frac{1}{(k a)^{2}} \frac{d V}{d \theta}\left[\frac{d}{d v}\left(v^{2}+k^{2} a^{2}\right)^{\frac{2}{2}}\left\{2 J_{1}(v)-V J_{2}(v)\right\}\right. \\
& +\left(-v^{2}+k^{2} a^{2}\right)^{\frac{1}{2}} \frac{d}{d v}\left\{2 J_{1}(v)-v d_{2}(v)\right\} \\
& =\frac{1}{(k q)^{2}} \frac{d v}{d \theta}(-v)\left(-v^{2}+k^{2} a^{2}\right)^{-\frac{1}{2}}\left\{2 J_{1}(v)-v J_{2}(v)\right\} \\
& +\left(v^{2}+K^{2} a^{2}\right)^{\frac{1}{2}}\left[\frac{2 J_{1}(v)}{v}-2 J_{2}(v)+v J_{3}(v)\right]
\end{aligned}
$$

是要

（7）

$$
\left.\theta_{n}=\sum_{0} \operatorname{mon}^{4}-\theta\right)
$$

$$
x_{2}=3 x_{1}-4 \dot{x}
$$

4 4

$$
e^{2 x} \frac{d^{2}}{\partial \pi}=\frac{e^{2}}{d n^{2}} \quad<=\sqrt{m p}
$$

(a) the forco bha streng oxation at

"ajy ta youngs mondul i Dimensions of $\left\{C_{2 R} \frac{1}{\gamma} \mathrm{~F}\right.$ O.is rowns monowes
b)

$$
\begin{aligned}
& S_{X x}=s_{Y y}=s_{z e}=-\Delta p \\
& \Rightarrow \epsilon_{x x}=\left(\frac{1}{Y}-\frac{20^{\circ}}{y}\right) \Delta p \\
& \frac{e_{0} e_{0}}{D_{0}}=\frac{(20-1)_{Y}}{D_{R}} A R \\
& \frac{\Delta l}{l_{0}} \Rightarrow \Delta \ell=\frac{\ell_{0}(20-1)}{Y} \cdot\left(P_{1}-P_{0}\right) \\
& \text { c) } 1=\frac{s_{z y}^{s}}{1} \quad G \theta=s_{2 Y} \\
& x_{x}^{104} \\
& \begin{array}{l}
G \theta=S_{2 M} \\
G=\frac{S_{2 Y}}{8} \text {, AND HAS MKS UNITS OR MEWTONS MERRRMOMUS }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2) })^{x}, 2(2, e(\omega t-\theta) \\
& \begin{aligned}
x_{2} & =3 x_{1}+4 i x_{2}=5 e^{\text {iatan }} \frac{4 x_{2}}{3 x_{1}} \\
& =0 e^{x}(\omega t e)
\end{aligned} \\
& x_{1}=2 e^{i(u t-0)} \\
& x_{2}=6 e^{i(\omega+-\theta)} \text { ois } e^{i(\omega t-\theta)} \\
& =6 e^{i(\omega t+0)}-\left(e^{\pi i}\right) \delta e^{i(a t-0)} \\
& =\left(6+8 e^{i \pi}\right) e^{i(\omega t-\theta)}
\end{aligned}
$$

$\operatorname{atan} \frac{8}{6}=\operatorname{atan} \frac{4}{3}=\operatorname{atan} i .(25)$
X_{1} LEAOS X_{2} EY atonn.es RADYA
b)

3) a)

4

$$
\begin{aligned}
P_{A V E}= & \frac{1}{T} \int_{0}^{p} R R(x)^{2} d{ }^{2} \quad \omega z m \\
& =\frac{1}{T} \int_{0}^{T} R^{2} R_{0}\left[\frac{F_{0} e^{i e n t}}{\omega \sum_{m}}\right] d t
\end{aligned}
$$

b)

$$
Q=\frac{\omega_{n}}{\omega_{2}-\omega_{1}}
$$

c) $z=\frac{\frac{T d y / b x}{\delta y / 5 t}}{0} 0$
d) $\begin{aligned} & \omega M \gg k \\ & \omega m>R\end{aligned} \quad \square$

$$
\begin{aligned}
& Y(0, t)=0=A \cos u t+C \sin \omega t \\
& Y(0, L)=0=\left(A \cos \frac{\omega}{C} L-B \sin \frac{\omega}{c} L\right) \cos \omega t+[\cos \omega \\
& \Rightarrow \cos \frac{\omega}{c} L\left[A \operatorname{ars} \omega C^{T} C \text { himwt }\right]^{\left.-D \sin \frac{\omega^{2}}{c}\right] \sin \omega t}
\end{aligned}
$$

$$
\Rightarrow \sin \frac{\omega}{c} L(B \omega+\omega t+D \operatorname{An} \omega t)=0
$$

$$
\chi \omega=\frac{n \pi c}{L}
$$

$$
Y(0, t)=0=A \cos \frac{n \pi c}{L} t+C \operatorname{An} \frac{n \pi c}{L} t
$$

$$
\therefore \quad A=0=C
$$

5)

$$
\begin{aligned}
& \text { a) } F=\left.T \frac{b Y}{\delta X}\right|_{X=-L} \\
& Y(x, t)=A \sin \frac{n \pi}{L} \times \cos \frac{n \pi c}{L} t \\
& \left.\frac{d Y n}{d x}\right|_{L}+\Delta n \pi \operatorname{cosn}_{L} \cdot x \text { an } \frac{\text { nte }}{L} \\
& \Rightarrow F=\frac{I n}{l} \sin \frac{n n c t}{L}
\end{aligned}
$$

b) $z_{s}=\frac{T d Y / d x}{S y / b t}$

$$
=\frac{1 T \frac{n}{l} \sin \frac{n \pi}{L} \times \cos \frac{n \pi c t}{L}}{T \sin \frac{n \pi}{L} \times \sin \frac{n \pi c}{L} t}
$$

e) $Z_{d p}=z_{a} t_{x=2}=T C \cot (-n \pi) 2$

GEMERAE MMORHATMOM

2. Whe whyo mataghan wok

med ${ }^{2}$

$$
\frac{b^{2}}{y^{2}} \frac{x^{2}}{x^{2}}=\frac{d^{2}}{b^{2}}
$$

 the bownday x=

(1) LONGITUDINAL

$$
c^{2} \frac{\delta b}{\delta x^{2}}-\frac{S^{0}}{b t^{0}} \geqslant c=\sqrt{Y / \rho} L
$$

Y YOONAS MODULUS
TORSIONAL

TRANSVERSE

THE verocity ofntranuers is benendent 4 an frequencr of WAVE. ank aldo y, P \&TD
(2) $x=0 \Rightarrow \angle A M P E D \Rightarrow \xi(0, t)=0$

$$
x=1 \text { FREE }>\left.\frac{S E}{S x}\right|_{n t}=0 \quad\left(C_{x=}=\frac{F_{x}}{S A}=0\right)
$$

$$
\begin{gathered}
\varepsilon(o, t)=\left(a_{1}\right)\left(a_{2} \cos w t \cdot b_{2} \sin w t\right) \\
\Rightarrow a_{1}=0
\end{gathered}
$$

$\Rightarrow S(x, t)=b_{1} \sin c^{4} x\left(a_{2} \cos a t t+b_{2} \sin \cos t\right)$
$\frac{b E}{S x}=\left(\frac{\omega}{c}\right) b_{1} \operatorname{cog} \frac{a}{c} x\left(a_{2} \cos \omega t+b, \cos \omega t\right)$
$\left.S S\right|_{L, t}=0 \Rightarrow \cos \frac{\omega}{c} L=0$

$$
\begin{align*}
& \frac{\omega}{c} L=\frac{(2 n+1) \pi}{2}>n \text { ISANINEGER } \\
& \omega_{n}=\frac{c}{2 L}(2 n+1) \pi \tag{25}
\end{align*}
$$

I 16
IT 25
II 20
裏 25

$$
\begin{aligned}
& c^{2} \frac{s^{2} \psi^{2}}{s x^{2}}=\frac{s^{2} t^{0}}{s q^{0}}+c=\sqrt{\rho} \quad \begin{array}{l}
\rho=\text { SHEAR MODULUS }
\end{array} \\
& p=\text { VOUME MASS DENSITV }
\end{aligned}
$$

$4)$

$$
\begin{aligned}
& \text { Der } \\
& z(r, \phi, t)=a_{m} J_{m}(k r) \cos \left(m \phi+\phi_{m}\right) \cos (\omega t+\alpha) \\
& \text { Note } \\
& z(r, \phi, t)=z(r, \phi+p 2 \pi, t) \geqslant p=0,1,2, \ldots \\
& \Rightarrow \cos \left(m \phi+\phi_{m}\right)=\cos \left[m(\phi+2 \pi p)+\phi_{m}\right] \\
& =\cos \left[\left(m \phi+\phi_{m}\right)+2 \pi p m\right]
\end{aligned}
$$

THIS WILL HOLD FOR THE GENERAL CASE IF (PM) IS AN INTEGER. P HAS BEEN SPECIFIED AN INTEGER \Rightarrow M MUST BE AN INTEGER 1010

$$
\begin{aligned}
& \text { 5) } Z_{m n}=A_{m n} \operatorname{sim} \frac{m t}{a} \times \operatorname{Ain} \frac{n \pi}{b} y \cos \left(\omega_{m n} t+\alpha_{m n}\right) \\
& m=3, \quad n=2
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{52}=\pi \sqrt{\frac{T}{0}} \sqrt{\left(\frac{2}{0.1}\right)^{2}+\left(\frac{2}{0.05}\right)^{2}} \geqslant c=\sqrt{\frac{1}{0}} \\
& =\pi \sqrt{\frac{\pi}{0}} \sqrt{30^{2}+603(40)^{2}} \\
& 21(500)-\sqrt{\frac{T}{(1)}} \sqrt{9001(2500)} \\
& \frac{1000}{\sqrt{3400200}}=\sqrt{1}=\frac{100}{10 \sqrt{34}}-\frac{10}{\sqrt{34}} \\
& \pi-\sqrt{50} \frac{n t}{\text { meter }} \\
& \text { AND }
\end{aligned}
$$

$$
\Delta V=-V_{0} \frac{A}{\rho c^{2}} e^{A\left(H t_{0} h_{2}\right.}
$$

$$
\begin{aligned}
& y_{R}\left(x_{0} \hat{y}\right)=z_{2}(x) e^{i \omega t}
\end{aligned}
$$

$\% \%$

(3)

 Whaporeon wat

都

 shers eho

$$
u_{n}=\int_{0} e^{n+}\left[e^{-i k n} \cdot \frac{e^{-A b e^{22}+n^{2}}}{\sqrt{n^{2}+h^{2}}}\right]
$$

$$
T_{Q}=\frac{1}{T} \int_{0}^{p} P_{r a s e} u_{\text {mat }} d A
$$

$$
\frac{1}{\infty} \int_{0}^{\infty}(n+-\infty) \cos (\beta-\beta) d \beta=\frac{1}{2} \alpha \sin (\beta-\alpha)
$$

when mighe prove haterumo

 smperames.

$$
q_{m}=R_{m}+\quad i(w m \infty j e d)
$$

 heraneaty

1) LET Vo ANO AO BE THE EQUMERIUM PABAMLTERE for dm, ANO V, ANO PB DESCRIBE dm AT SOME
TME t_{∞} THEN:

$$
\begin{array}{r}
d m=p_{0} V_{0}=p_{1} V_{1} \\
P_{0}=\frac{V_{1}}{V_{1}}=\frac{V_{0}}{V_{1}}-1 \\
P_{0}-p_{0}=\frac{V_{0}-V_{1}}{V_{1}}
\end{array}
$$

 For A SPHERMEL WAVE MS RRORORTIONAL TO THE PRESSURE E

$$
s=p_{0}^{P} e^{2} \quad(p \& 15 s)
$$

THUS

$$
\begin{aligned}
& V_{0} p_{0} p^{2} \\
& \left.A V=\frac{V_{0} Q}{P_{0}} \quad ; P=\frac{A}{1}, \operatorname{coc} k r\right)
\end{aligned}
$$

$$
=-V_{0} \frac{A}{p_{0} c^{2}}+i\left(e^{t}-k r\right)
$$

EHORE: GOUTION GIUEN IN PROELEM IS NOT MMENSBOMALY Consistanta nnturtuely, it seems The Farthere ONE MOVES FROM THE SOUREE THE SMALER AV CROMES it AV is A MOMOTONIEALLY DECREASING FUNETHA ot r] This seems veasathe to me. If your are nefferand
 namien esiantulle unclanged prat av ot would yf new wowe crera prasen

$$
\begin{aligned}
& S=p_{0}=P_{1}-p_{0}=\frac{V_{0} V_{1}}{V_{1}} \\
& \Rightarrow \frac{V_{0}-V_{1}}{V_{1}}=\frac{Q}{Q_{0} C^{2}} \\
& V_{1}-V_{0}=\Delta V \angle \angle 1 \Rightarrow V_{1} \leadsto V_{0} \\
& \text { THEN }-\frac{\Delta V}{V_{0}}=\frac{Q^{2}}{p_{0}}
\end{aligned}
$$

2)AFOR A DRIVEN DAMPED HARMONIC OSCILLATOR in tree steady state:

$$
V=\frac{1}{z_{m}} F_{0} \cos (\omega t-\phi)
$$

WHERE $\quad z_{m}=\sqrt{R_{m}{ }^{2}+(\omega m-k / \omega)^{2}}$

$$
\phi=\tan ^{-1} \frac{\omega m-k / \omega}{R_{m}}
$$

Also: $F=F_{a} \cos \omega t$
THE RATE AT WHICH THE DRIVING FORGE 15 SUPPLYING ENERGY
is equal to the product of the
INSTANTANEOUS DRIVING FORCE AND
THE RESULTING VELOCITY:
$W_{i_{1 N}}=F V=\frac{F_{0}^{2}}{z_{i n}} \cos \omega t \cos (\omega t-\phi)$
THE RATE AT WHICH ENERGY IS ABSORBED IN THE SYSTEM IS THE RATE ENERGY IS DISSIPATED BY Rm:

$$
\begin{aligned}
W_{i_{\text {out }}} & =\frac{1}{2} R_{m}(\dot{x})^{2}=\frac{1}{2} R_{m} V^{2} \\
& =\frac{R_{m} F_{o}^{2}}{z_{m}^{2}} \cot { }^{2}(\omega t-\phi)
\end{aligned}
$$

THE TOTAL WORK DONE PER VIBRATION BY THE DRIVING FORCE:

$$
\begin{aligned}
& \frac{\int_{0}^{\gamma} W_{i n} d t}{\gamma}=\gamma=\frac{2 \pi}{\omega} \\
W_{1 N}= & \frac{E^{2}}{Z_{m} \eta} \int_{0}^{\gamma} \cos \omega t \cos (\cos t-\phi) d t \\
= & \frac{E_{2}}{E_{m} r} \int_{0}^{\gamma}\left[\cos ^{2} \omega t \cos \phi+\cos \cot t \sin \cos \sin \phi\right] d t \\
= & \frac{F_{m}^{2}}{z_{m}} \cos \phi
\end{aligned}
$$

$\operatorname{SINCE} \quad \cos \phi=\frac{R_{m}}{Z_{m}}$ (MECHANICAL PHR. FACTOR)

$$
W_{1 N}=\frac{F_{2}}{2 Z_{m}^{2}}
$$

THE DISSIPATED POWER AVERAGED OVER A CYCLE IS:

$$
\begin{aligned}
W_{\text {our }} & =\frac{\int_{0}^{T} W_{\text {our }}^{0} d t}{T} \\
& =\frac{F^{2} R_{m}}{T z_{m}^{2}} \int_{0}^{T} \cos ^{2}(\omega t-\phi) d t \\
& =\frac{E^{2} R_{m}}{2 z_{m}^{2}}
\end{aligned}
$$

THUS, M THE STEADY STATE, THE AMPLITUDE AND PHASE OF A DRIVEN OSCILLATOR SO ADUST THEMSELVES THAT THE AVERAGE POWER BEING SUPPLIED BY THE DRIVING FORCE IS JUST EQUAL TO THAT BEING DISSIPATED BY THE FRICTIONAL Force

THE MOTION OF A DRIVEN DAMPED
HARMONIC OSCILLATOR IS GIUENGY゙

$$
\begin{aligned}
& x=-\frac{\left.i\left(F_{0} / \omega\right) e^{i \omega t}(\omega)-1 R / \omega\right)}{R+R(x) g} \frac{F_{0} / \omega \sin (\omega t-1)}{\sqrt{R+(\omega m+N)}} \\
& \frac{d x}{d t}=V=\frac{1}{m_{m}} F_{0} e^{i \omega t} \Rightarrow R_{0}(x)=F_{0} \frac{\cos (\cos -\phi)}{R^{2}+\left(\cos ^{2}+1\right.}
\end{aligned}
$$

THE KINETIC ENERGY IS THEN ($\frac{1}{7}$ MV年)

$$
\begin{aligned}
U_{K} & =\frac{1}{2} m_{0} \dot{x}_{R E A L}^{2} \\
& =\frac{m F_{0}^{2}}{2 z_{m}^{2}} \cos 2(\omega t-\phi)
\end{aligned}
$$

THE POTENTML ENERGY ($\frac{1}{2} k x^{2}$)

$$
\begin{aligned}
& U_{p}=\frac{1}{k} x^{2} \\
& =\frac{K F_{0}^{2}}{22_{m}^{2} \omega^{2}} A M(\omega t-\phi)
\end{aligned}
$$

THEN:

$$
U_{k}+U_{p}=\frac{F_{0}^{2}}{2 z_{m}^{2}}\left[m \cdot \cos (\omega t-\phi)+\frac{k}{v^{2}} \sin (\cos t-\phi)\right]
$$

WHICH 15 CONSTANT (a) RESONANCE,
$O R \quad M=K_{2} \omega_{R}^{2} \Rightarrow \omega_{k}=\sqrt{k / m}$
AND $\quad Z_{m}=R$
AT RESONANCE:

$$
U_{k}+U_{p}=\frac{E_{0}}{2 R_{m}^{2}}
$$

4)THE MOTIf OF A CIRCULAR MEMBRANE VBMATMG W HTS FUNMEMENTAL MODE IS:

THE VELOCITY AMPLITUDE IS THEA:

$$
U={ }^{+A_{0} E} \frac{Z}{a} J_{0}\left(\frac{Z}{a} r\right)
$$

THE SURGE STRENGTH IS DEFINED AS:

$$
Q=\int_{S} U \cdot d S
$$

THE MEMBRANES MOTION IS NORMAL TO THE PLANE
IT OCCUPIES $\Rightarrow U \cdot d S=U d S$

$$
\begin{aligned}
& \therefore Q=\int_{s}+\frac{A_{0} z, c}{a} J_{0}\left(\frac{z_{1}}{a} r\right) r d r d \phi \\
& =+A_{0}<\int_{0}^{2 \pi} d \phi \int_{0}^{a} \frac{z_{0} r}{a} J_{0}\left(\frac{z_{1}}{a} r\right) d r \\
& \text { LET } \gamma=\frac{z_{1} r}{a} \Rightarrow d \gamma=\frac{z}{a} d r \\
& \Rightarrow Q=4 A_{0} C(2 \pi) \int_{0}^{z} \gamma J_{0}(\gamma)\left(\frac{a}{z_{1}}\right) d \gamma
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\operatorname{Aogc} 2 \pi}{2}\left[\gamma J_{1}(\gamma)\right]_{0}^{8} \\
& =\frac{A_{0}^{2 T} T a c}{v_{1}}\left[z, J_{1}(z,)\right] \\
& =A_{0} 2 \pi a C J_{1}\left(z_{0}\right) \\
& C=\sqrt{T / O} ; J_{1}\left(Z_{1}\right)=J_{1}(2.105)=\frac{1}{2} \\
& \Rightarrow Q=A_{0} T Q \sqrt{T / Q}
\end{aligned}
$$

FOR A RECTANGULAR BOUNDRY. THE EIGEN FREQUENCIES ARE: $f_{m n}=\frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}$
FOR A SQUARE BOUNDRY, $a=b$ AND $f_{m n}=\frac{c}{2 a} \sqrt{m^{2}+n^{2}}$.
THE FUNDEMENTAL FREQUENCY ($m=n=1$) $f_{11}=\frac{c \sqrt{2}}{2 a}$
$\frac{f_{m 1}}{f_{11}}=\frac{\frac{c}{2 q} \sqrt{m^{2}+n^{2}}}{\frac{c \sqrt{2}}{2 a}}=\frac{\sqrt{m^{2}+n}}{\sqrt{2}}$

THUS, THE CHARACTERISTIC FREQUENCIES OF A STRETCHED MEMBRANE WITH SQUARE FRAME ARE NOTINGENERAL INTEGRAL MULTIPLES OE THE FUNDEMENTAL

$$
\begin{aligned}
& \text { C) } a_{a)} u=\int d u_{r} \cdot \frac{r}{r} \\
& d U_{r}=\frac{d P}{z^{\prime}}=\left[\frac{i \text { pet } U_{0} d S}{\mathcal{V}^{2} r^{r}} e^{i\left(\omega t-k r^{\prime}\right)}\right]\left[\frac{1+\left(k r^{\prime}\right)^{2}}{\rho^{2} r^{\prime}\left(k r^{\prime}+i\right)}\right] \\
& =\frac{i v_{0}^{2} d s\left[1+(k r)^{2}\right]}{2 \pi r^{\prime}}\left[k r^{\prime}+i\right] e^{\left.i(\omega) t-k r^{\prime}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3 \pi v_{0} d s(k r-i)}{2 \pi r \cdot} e^{i\left(\omega t-k m^{2}\right.} \\
& =\frac{V_{0}\left(1+i k r^{\prime}\right) d s}{2 \pi r^{2}} e^{i\left(\omega i-k r^{\prime}\right)} \\
& u=\int_{P I S T O N} \frac{\bar{v}_{0}\left(1 t_{k}^{2} k r^{\circ}\right) d s}{2 \pi r^{\circ} 3} e^{i(\omega t-k r)}
\end{aligned}
$$

$$
u=r v_{0} e^{i \omega t} \int_{0}^{a} \int_{0}^{2 \pi} \frac{\left(1+k r^{\circ}\right)}{2 \pi r^{\prime 3}} e^{-i k r^{\prime}} \xi d \phi \delta \xi
$$

Now

$$
\begin{aligned}
& r^{\prime}=\sqrt{\xi^{2}+\xi^{2}} \\
& d r^{\prime}=\frac{\xi d \xi}{\sqrt{\xi^{2}+r^{2}}}=\frac{d s}{r^{\prime} d \phi} \\
& \Rightarrow d s=r^{\prime} d r^{\prime} d \phi \quad \therefore \varepsilon=0 \Rightarrow r^{\prime}=r ; \varepsilon=a \Rightarrow r^{\prime} \sqrt{a^{2} r^{2}} \\
& u=r v_{0} e^{i \omega t} \int_{0}^{2 \pi} \int_{r}^{\sqrt{a^{2} r 2}} \frac{1+i k r^{\prime}}{2 \pi r^{\prime 3}} e^{-i k r^{\prime}} r^{\prime} d r^{\prime} d \phi \\
& =r v_{0} e^{i \omega t} \int_{r}^{\sqrt{a^{2}+2}} \frac{1+i k r^{\prime}}{r^{\prime 2}} e^{-i k r^{\prime}} d r e^{i k} \\
& \begin{array}{l}
=r v_{0} e \\
=r v_{0} e^{i \omega t} \int_{r}^{r \sqrt{a^{2}+r^{2}}}\left[i k \frac{e^{-i k r}}{r^{\prime}}+\frac{e^{i k r^{\prime}}}{r^{\prime 2}}\right] d r^{\prime}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \\
& 0=U_{0} e^{i \omega t}\left[e^{-i k r}-\frac{r e^{-i k \sqrt{r^{2} a^{2}}}}{\sqrt{r^{2}+a^{2}}}\right] \\
& =U_{0}\left[e^{i(\omega t-k r)}-\frac{r}{\sqrt{r^{2}+a^{2}}} e^{i\left[\omega t / 5 \sqrt{r^{2}+a^{2}}\right]}\right] \\
& =U_{0}\left[\cos (\omega t-k r)-\frac{r}{\sqrt{r^{2}+a^{2}}} \cos \left\{\omega t-k \sqrt{r^{2}+a^{2}}\right\}\right. \\
& +_{j}\left\{\sin (\omega t+k r)-\frac{r}{\sqrt{r^{2}+a^{2}}} \sin \left(\omega t \cdot k \sqrt{r^{2}+a^{2}}\right\}\right] \\
& \Rightarrow \operatorname{Re}[U]=U_{0}\left[\cos (\omega t-k r)-\frac{r}{\sqrt{r^{2}+a^{2}}} \cos \left(\omega t \cdot k \sqrt{r^{2}+a^{2}}\right)\right] \\
& \text { c) } p=-\rho \subset U_{0} e^{i \omega t}\left[e^{-i k \sqrt{a^{2}+r^{2}}}-e^{\omega i k r}\right] \\
& =-\rho c U_{0}\left[e^{i\left(\omega t-k \sqrt{a^{2}+r^{2}}\right)}-e^{i\left(\omega^{t}-k r\right)}\right] \\
& =\rho c U_{0}\left[\cos (\omega t-k r)-\cos \left(\omega t-k \sqrt{r^{2}+a^{2}}\right)\right. \\
& \left.\left.+j \sin (\omega)^{t}-k r\right) \cdot \sin \left(\omega t-k \sqrt{r^{2}+a^{2}}\right)\right] \\
& \Rightarrow \operatorname{Re}[\rho]=\rho \subset U_{0}\left[\cos (\omega t \cdot k r) \cdot \cos \left(\omega t \cdot k \sqrt{r^{2}+a^{2}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& L_{Q}=\frac{1}{T} \int_{0}^{T} p_{\text {REA }} U_{\text {REAL }} d t \\
& =\frac{1}{T} \int_{0}^{T}\left[p c U_{0}\left\{\cos (\omega t-k r)-\cos \left(\omega t-k \sqrt{r^{2} a^{2}}\right)\right\}\right. \\
& {\left[U _ { 0 } \left\{\cos (\omega t-k r)-\frac{r}{\sqrt{r^{2}+a^{2}}} \cos \left(a t \cdot k \sqrt{r^{2}+a^{2}} 3\right]\right.\right.} \\
& =\frac{\rho c U_{0}^{2}}{r} \int_{0}^{T t}\left[\cot ^{2}(\omega t-k r)\right. \\
& +\frac{r}{\sqrt{r^{2}+a^{2}}} \cot ^{2}\left(\omega t-k \sqrt{r^{2}+a^{2}}\right) \\
& -\cos (\omega t-k r) \frac{r}{\sqrt{r^{2}+a^{2}}} \cos \left(\cot \cdot k \sqrt{r^{2}+a^{2}}\right) \\
& \left.-\cos (\omega t \cdot k r) \cos \left(\omega t-k \sqrt{a^{2}}\right)\right] d t \\
& =\frac{p \omega_{0}^{2}}{T} \int_{0}^{1}\left[\frac{1}{2}\{1+\cos 2(\omega t-k r)\}\right. \\
& +\frac{r}{2 \sqrt{r^{2}+a^{2}}}\left\{1+\cos 2\left(\omega t-k \sqrt{r^{2}+a^{2}}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\rho c \omega_{0}^{2}}{\tau}\left[\int_{0}^{1} \frac{1}{2}\left(1+\frac{r}{\sqrt{r^{2}+a^{2}}}\right) d t\right. \\
& \left.-\left(\frac{r^{2}}{\sqrt{r^{2}+a^{2}}}+1\right) \int_{0}^{\pi} \cos (\omega t-k r) \cos \left(\omega t-k \sqrt{r^{2}+a^{2}}\right) d t\right] \\
& =\frac{\rho \subset U_{0}^{2}}{X}\left[\frac{x}{2}\left(1+\frac{r}{\sqrt{r^{2}+a^{2}}}\right)\right] \\
& -\beta c U_{0}^{2}\left(\frac{r}{\sqrt{r^{2}+a^{2}}}+1\right)\left(\frac{1}{r} \int_{0}^{r} \sin \left(\omega t-k r+\frac{\pi}{2}\right)\right. \\
& \cos \left(\omega t-\left(x \sqrt{r^{2}+a^{2}}\right) d t\right) \\
& =\frac{\rho c U_{0}^{2}}{2}\left(1+\frac{r}{\sqrt{r^{2}+a^{2}}}\right) \\
& -p \cos \left(1+\frac{r}{r^{2}+a^{2}}\right)\left(\frac{1}{2} \sin \left(k \sqrt{r^{2}+a^{2}}-k r+\frac{\pi}{2}\right\}\right) \\
& =\frac{1}{2} \rho \subset U_{0}^{2}\left(1+\frac{r}{\sqrt{r^{2}+a^{2}}}\right) \\
& -\frac{1}{2} \rho \subset v_{0}^{2}\left(1+\frac{r}{\sqrt{r}+a^{2}}\right) \cos \left[K\left(\sqrt{r^{2}+a^{2}}-r\right)\right] \\
& =\frac{1}{2} \rho c U_{0}^{2}\left(1+\frac{r}{\sqrt{r^{2}+a^{2}}}\right)\left[1-\cos \left\{k\left(\sqrt{r^{2}+a^{2}}-r\right)\right\}\right]
\end{aligned}
$$

$$
; z_{m}{ }^{*} \omega m
$$

$$
\begin{aligned}
& P_{i}=A_{1} e^{i\left(\omega t-k_{1} x\right)} \\
& P_{r}=B_{1} e^{i\left(\omega t+k_{1} x\right)} \\
& P_{t}=A_{2} e^{i\left(\operatorname{tat}-k_{2} x\right)}
\end{aligned}
$$

b) $\left.\left.\sum 0\right|_{x=0} \triangleq \quad\right|_{x=0}+\left.0\right|_{x=0} D_{x=0}$
so THE TOTAL FQRCE ON THE DISE I罗:

$$
\begin{aligned}
& F_{D}=S\left[\left.\theta_{i}\right|_{x=0}+\left.O_{+}\right|_{x=0}+\left.O_{r}\right|_{x=0}\right] \\
& a_{0}=F_{0}=\frac{s}{m}\left[\left.0_{0}\right|_{x=0}+\left.0_{0}\right|_{x=0}+\left.p_{n}\right|_{x}=0\right] \\
& v_{0}=\int a_{0} d t=\left.\int \frac{5}{M} \sum_{0}\right|_{x=0}+\left.O_{t}\right|_{x=0}+\left.P_{r}\right|_{x=0} d t \\
& =\int \frac{s}{m}\left[A_{1}+B_{1}+A_{2}\right]^{2 \omega t} d t \\
& \dot{x}_{0}=\frac{-\dot{s}}{\omega M}\left[\rho_{i}\left(\rho_{t}+0\right)_{x=0}\right. \\
& \therefore\left[\left(R_{R}+P_{n}\right)-P_{*}\right] S \text { when }\left(P_{n}+P_{n}\right)>0 \text { fonce } \\
& \text { as an }+x \text { deredem }
\end{aligned}
$$

$\frac{A_{1}}{A_{1} C_{1}} \frac{B_{1}}{D_{1}}=\frac{A_{1}+B_{1}-A_{2}}{A_{1} m}=\frac{A_{2}}{A_{2} C_{2}}$
When Pex >o free wa wo w - x dercetzon

Shlue for

$$
\left.\left.\frac{\beta_{1}}{A_{1}}=\frac{\left(P_{2} c_{2}-P_{1} c_{1}\right) s+1 w m}{\left(p_{2} c_{2}+P_{1} c_{1}\right) s+1 w m} \quad \Rightarrow \quad \right\rvert\, \frac{B_{1}}{A}\right)=1
$$

$$
\begin{aligned}
& \text { c) } P_{U P}=P_{t}=A_{2} e^{i\left(\omega t-k_{2} x\right)} \\
& \Rightarrow U_{u p}=\frac{A_{2}}{\rho_{2} c_{2}} e_{i(\omega t-k x)}^{i\left(\omega t-k_{2} x\right)}=\frac{1}{\rho_{2} c_{2}} P_{t} \\
& P_{\text {Down }}=A_{1} e^{i(\omega t-k, x)}+B, e^{i(\omega t-k, x)} \\
& U_{\text {Down }}=\frac{A}{\beta_{1} c_{1}}\left[A_{1} e^{i(\omega t-k, k)}-B_{1} e^{i(\omega t-k, x)}\right] \\
& \text { FINO BIA. } \\
& \eta=\frac{1}{p_{1} c_{1}}\left[p_{i}^{\prime}-p_{n}\right]
\end{aligned}
$$

$$
\begin{align*}
& \left.U_{\text {Down }}\right|_{x=0}=\dot{x}_{D} \\
& \left.\frac{1}{p_{1} c_{i} \omega A_{1}}-B_{1}\right] e^{i, t}=-\frac{i s}{\omega m}\left[A_{1}+B_{1}+A_{2}\right] e^{i,} \\
& \frac{i}{s p_{1} c_{1}}\left[A_{1}-B_{1}\right]=A_{1}+B_{1} A_{2} \tag{A}
\end{align*}
$$

$$
\begin{gathered}
\text { Sup }\left.\right|_{x=0}=\dot{x}_{0} \\
\frac{A_{2}}{p_{2} C_{2} e^{i \omega} A_{2}}=\frac{s}{\operatorname{i\omega m}\left[A_{1}+B_{1}+A_{2}\right] e^{i \omega t}} \\
\frac{s p_{2} C_{2}}{s p_{2}}=A_{1}+B_{1} \\
A_{2}\left(-1+\frac{i \omega m}{s p_{2} C_{2}}\right)=A_{1}+B_{1} \\
A_{2}=\frac{A_{1}+B_{1}}{-1+\frac{i \omega m}{s p_{2} C_{2}}}
\end{gathered}
$$

PLUGGING into (A).

$$
\begin{aligned}
& \frac{i \omega m}{s p_{1} c_{1}}\left[A_{1}-B_{1}\right]=A_{1}+B_{1}+\frac{A_{1}+B_{1}}{-1+\frac{i \omega m}{s p_{2} C_{2}}} \\
& \frac{i \omega m}{s p_{1} c_{1}}\left[A_{1}-B_{1}\right]=\left[1-\frac{1}{\left.1-\frac{i \omega m}{s p_{2} c_{2}}\right]\left[A_{1}+B_{1}\right]}\right. \\
& {\left[\frac{i \omega m}{s p_{1} c_{1}}-1+\frac{1}{\left.1-\frac{i \omega m}{s p_{2} C_{2}}\right] A_{1}=\left[1-\frac{1}{\left(1-\frac{i \omega m}{s p_{2} C_{2}}\right)}+\frac{i \omega m}{p_{1} c_{1}}\right]}\right.} \\
& \frac{B_{1}}{A_{1}}=\frac{\frac{i \omega m}{s p_{1} c_{1}}-\left[1-\frac{1}{\left(1-\frac{i \omega m}{s p_{2} c_{2}}\right]}\right.}{\frac{i \omega m}{s p_{1} c_{1}}+\left[1-\frac{1-\frac{i \omega m}{s p_{2} C_{2}}}{i}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{B_{1}}{A_{1}}=\frac{\frac{i \omega m}{s p_{1}}-\left[1-\frac{s p_{2} c_{2}}{s p_{2} c_{2}-i \omega m}\right]}{\frac{s \rho_{2} c_{2}}{s p_{1}}+\left[1-\frac{s \rho_{2}}{s \rho_{2}-i \omega m}\right]} \\
& =\frac{i \omega m}{\frac{i \omega}{p_{1}} c_{1}-\left[\frac{s \rho_{2} c_{2}-i \omega_{2} m-s p_{2} c_{2}}{s \rho_{2} c_{2}-i \omega m}\right]} \\
& =\frac{\pi \omega_{1} m}{s p_{1} c_{1}}+\left[\frac{s \rho_{2} c_{2}-i \omega m-s \rho_{2} c_{2}}{s p_{2} c_{2}-i \omega_{m}}\right] \\
& =\frac{\frac{i \omega m}{s p_{1} c_{1}+\frac{i \omega m}{s p_{2} c_{2}-i \omega m}} \frac{i \omega_{1}-\frac{1 c_{1}}{s p_{2} c_{2}-i \operatorname{m}}}{}=\frac{1}{s c_{1}}}{} \\
& =\frac{\frac{1}{S p_{1} c_{1}}+\frac{1}{5 p_{2} c_{2}-i \cos }}{\frac{1}{s p_{1} c_{1}}-\frac{1}{S p_{2} c_{2}-i \omega m}} \\
& =\frac{\frac{S P_{2} C_{2}-i \sin m}{S D_{1}}+1}{\frac{S P_{2} C_{2}-i \ln m}{S P_{1} C_{1}}-1} \\
& =\frac{s p_{2} c_{2}-i \operatorname{cin}+s p_{1} c_{1}}{s p_{2} c_{2}-i \operatorname{com}-5 p_{1} c_{1}} \\
& =\left[\frac{s\left(p_{2} c_{2}+p_{1} c_{1}\right)-i \omega m}{s\left(p_{2} c_{2} p_{1} c_{1}\right)-i \omega m}\right]\left[\frac{s\left(p_{2} c_{2}-p_{1} c_{1}\right)+i+1}{s\left(p_{2} c_{2}-p_{1} c_{1}\right)+i \omega m}\right] \\
& s^{2}\left(p_{2} c_{2}+p_{1} c_{1}\right)\left(p_{2} c_{2} \beta_{1} c_{1}\right)+i \omega m s\left(p_{2} c_{2}+p_{1} c_{1} p_{2} c_{2} p_{1} c_{1}\right) \\
& =\frac{e^{2}+\omega^{2} m^{2}}{\left[s\left(\rho_{2} c_{2} p_{1} c_{1}\right)\right]^{2}+\omega^{2} m^{2}} \\
& =\frac{s^{2}\left[\left(p_{2} c_{2}\right)^{2}\left(\rho_{1} c_{1}\right)^{2}\right]+(\omega m)^{2}+24 m S p_{1} C_{1}}{s^{2}\left(p_{2} c_{2}-p_{1} c_{1}\right)^{2}+\omega^{2} m}
\end{aligned}
$$

SO THERE WHL SE A PHASE SHIFT OF:
$\operatorname{atan} \frac{2 u m m_{1} c_{1}}{5 m^{n}\left[\left(p_{2} c_{2}\right)^{2}-\left(p_{1} c_{1}\right)^{2}\right]}$?
$-a \tan \frac{24 M}{5\left[\left(\rho_{2} C_{2}\right)^{2}-\left(\beta_{1} C_{1}\right)^{2}\right]}$

FOR A DISK WITH A SMALL MASS? PHASE SHIT $=41 \times 0^{\circ}$
AS THE MASS INCREASES, Y DECREASES [SUE $\left.A_{1} \mathrm{CDP}_{2} \mathrm{C}_{2}\right]$ TO MAXIMUM (MINIMUM?) VALUE 0. 90°

THE PHASE SHAT ALSO DECREASES WHTH el

For mary large Mass $u_{p}+u_{n}=0 \quad a t x=0$ which loads o $\overrightarrow{A_{1}}=\vec{B}$, whore mo charge plat on pleasure have.
8)

\downarrow \& $\rho_{b s}$

$$
\begin{aligned}
& \left.P_{L}\right|_{X=0}=\left.P_{U D}\right|_{Q=0}=\left.P_{D}\right|_{Y=0}=\left.P_{t}\right|_{X=0} \\
& \left.U_{i}\right|_{X=0} S=\left.U_{U P}\right|_{Y=0} ^{S b}+U_{\text {Down }}\left|{ }_{y=0} S_{0}+U_{R}\right|_{x=0} S \\
& {\left[\frac{U_{L} S}{P_{L}}=\frac{U_{R} S}{O_{r}}+\frac{U_{D B} S_{B}}{O_{Q}}+\frac{U_{D} S S_{B}}{P_{D}}\right]_{X=Y=0}} \\
& \frac{1}{\sigma_{V} U_{L S}}=\frac{1}{\rho_{V} / U_{R S} S}+\frac{1}{P_{U} / U_{U_{P} S_{G}}}+\frac{1}{P_{D} / U_{D} S_{G}} \\
& \frac{1}{z_{L}}=\frac{1}{z_{R}}+\frac{1}{z_{U P}}+\frac{1}{z_{D O W N}}=\frac{1}{z_{R}}+\frac{1}{\left(\frac{z_{D}}{2}\right)} \\
& z_{L}=\frac{z_{\text {up }} z_{\text {down }}+z_{R} z_{\text {dOWN }}+z_{R} z_{\text {up }}}{z_{R} z_{\text {UP }} z_{\text {DoWN }}} \\
& \frac{\operatorname{ec}}{S} \frac{A_{1}+B_{1}}{A_{1}-B_{1}}=\frac{Z_{0 p} Z_{0}+\frac{P C}{S} Z_{0}+\frac{R C}{S} Z_{u p}}{Z_{0} Z_{0} \cdot / 5} \\
& \text { FROM SYMMETRY: } Z_{U}=Z_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{P C}{5} \cdot A_{1}+B_{1}=\frac{Z_{0}^{2}+\frac{2 \rho}{S} Z_{0}}{\frac{P C}{5} Z_{0}^{2}} \\
& \frac{A_{1}+B_{1}}{A_{1}-B_{1}} \frac{\frac{S}{P C} Z_{0}^{2}+2 Z_{0}}{\frac{P C}{S} Z_{0}^{2}}=\frac{\frac{S}{P C} Z_{0}+2}{\frac{C C}{S} Z_{0}}
\end{aligned}
$$

A you call $\frac{z_{2}}{2}$ 的 z_{e}. Then $\frac{1}{z_{n}}=\frac{1}{z_{R}}+\frac{1}{z_{0}}$

$$
\begin{aligned}
& \frac{P C}{S} Z_{0}\left(A_{1}+C\right)=\left(\frac{S}{P C} Z_{0}+2\right)\left(A_{0}-B,\right) \\
& B_{1}\left[\frac{p c}{S} z_{0}+\frac{s}{p c} z_{0}+2\right]=A_{0}\left[\frac{s}{p c} z_{b}+2-\frac{c}{s} z_{b}\right] \\
& \frac{B_{1}}{A_{1}}=\frac{\left(\frac{5}{p}-\frac{p}{5}\right) z_{0}+2}{\left(\frac{p L}{L}\right) \frac{Z_{0}}{S}+2} \\
& A_{1}+B_{1}=A_{2} \Rightarrow 1+\frac{B_{1}}{A_{1}}=\frac{A_{2}}{A_{1}} \\
& \Rightarrow \frac{A_{2}}{A_{1}}=\frac{\left(\frac{C}{p C}-\frac{\rho C}{S}\right) Z_{D}+2+\left(\frac{S}{P}+\frac{\rho}{S}\right) Z_{D}+2}{\left(\frac{\rho C}{S}\right) Z_{D}+2} \\
& =\frac{\frac{25}{\rho c} z_{0}+4}{\left(\frac{5}{\rho C}+\frac{\rho c}{S}\right) z_{b}+2}
\end{aligned}
$$

FOR CAPPED TOP: $\left.z_{b}\right|_{\text {Yo }}=-\frac{i p c}{s_{b}}$ coth

$$
\begin{aligned}
& \Rightarrow \frac{A_{2}}{A_{1}}=\frac{\frac{Z S}{P C} Z_{D}+4}{\frac{S}{P C} Z_{D}+\frac{P C}{S} Z_{D}+2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{2 s}{p c}(-\dot{s} c)+4 \tan 1 s L}{\frac{s}{e c}\left(\frac{i p c}{s b}\right)+\left(\frac{p c}{S}\right)\left(\frac{-2 p c}{s b}\right)} \\
& =\frac{-i 2 s+4 \tan k b}{-i / s b-\frac{i p^{2} c}{5} b} \\
& =\frac{-2 s^{2}+45 s \cdot \tan k L}{i\left(s^{2}+p^{2} c^{2}\right)} \\
& =\frac{2 s^{2}+i 4 s s_{b} \tan k L}{s^{2}+p^{2} c^{2}} \\
& \Rightarrow\left|\frac{A_{2}}{A_{1}}\right|^{2} \alpha_{t}=\frac{4 s^{4}+16 s^{2} s_{b}^{2} \tan ^{2} k L}{\left[s^{2}+\rho^{2} c^{2}\right]^{2}} \text { ? } \\
& \alpha_{t}=\frac{1}{1+\left(\frac{5}{5}\right)^{2} \tan ^{2} \ln t}
\end{aligned}
$$

9)

8-2)

$$
\begin{aligned}
& e_{p}=\frac{16}{3 \pi} a \\
& \text { wo } C \sqrt{\frac{5}{\Omega V}} \\
& S=\pi r^{2}=\pi 10^{-2} \\
& \ell^{\prime}=\frac{16}{3 \pi} 10^{-1}+l \\
& V=.3 \times .5 \times .4=.15 \times .4=.06 m m^{3} \\
& C=331 \\
& 343 \\
& \omega_{0}=331 \sqrt{\frac{\pi 10^{-2}}{\frac{16}{3 \pi^{101}}(0.06)}} \\
& f_{0}=\frac{\omega_{0}}{2 \pi}=331\left(\frac{1}{2}\right) \sqrt{\frac{10^{-2}}{\frac{16}{101(0.06)}}} \\
& =29.4+7
\end{aligned}
$$

10)

$(8-3)$

RATIO INTENSTY OF REFLEGTED WAVE
TO INCIOENT WAUE:

$$
\begin{aligned}
& \text { CIDENT WAVE } \\
& \left|\frac{B_{1}}{A_{1}}\right|^{2}=\left(\frac{S_{1}-52}{S_{1}+S_{2}}\right)^{2}
\end{aligned}
$$

Now

$$
\begin{aligned}
& A_{1}+B_{1}=A_{2} \\
& 1+\frac{B_{1}}{A_{1}}=\frac{A_{2}}{A_{1}}
\end{aligned}
$$

$$
\Rightarrow \frac{A_{2}}{A_{1}}=\frac{S_{1}-S_{2}}{S_{1}+S_{2}}+1
$$

$$
=\frac{s_{1-5}+5+s_{1}+S 2}{s_{1}+5}
$$

$$
=\frac{2 s_{1}}{s_{1}+s_{2}}
$$

$$
\begin{array}{r}
\left|\frac{A_{2}}{A_{1}}\right|^{2}=\frac{4 S_{1}^{2}}{\left(S_{1}+S_{2}\right)^{2}} \begin{array}{r}
\text { RATIO OF TRANSMITEO } \\
\text { TO INCINENT INTENSITT }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { a) } \\
& P_{i}=A_{1} e^{i(\omega t-k x)} \\
& P_{r}=B, e^{i(\omega t+1 e n)} \\
& O_{t}=A_{2} e^{i(\omega t-k x)} \\
& \left.D_{2}\right|_{x=0}=\left.P_{r}\right|_{x=0} \Rightarrow A_{1} \pm B_{1}=A_{2} \\
& \left.U_{L} S_{1}\right|_{x=0}=\left.U_{0} S_{2}\right|_{x=0} \frac{1}{p c}\left[A_{1}-B_{1}\right] S_{1}-A_{2} S_{2} \\
& \left(A_{1}-B_{1}\right) S_{1}=A_{2} S_{2} \\
& \therefore \frac{A_{1}+B}{A_{1}-B_{1}}=\frac{S_{1}}{S_{2}} \\
& \text { ANO } \frac{B_{1}}{A_{1}}=\frac{s_{1} / s_{2}=1}{S_{1 / 2}+1}
\end{aligned}
$$

b) $\mid A_{1} \|^{2}=\frac{45,2}{(5,+5)^{2}}$

TRANSMITTED WAVE WILL HAVE GREATER
INTENSITY IF:
$\frac{45,2}{(5,+5)^{2}}>1$

$$
\begin{aligned}
& 4 s_{1}^{2}>\left(s_{1}+s_{2}\right)^{2} \\
& 2 s_{1}>s_{1}+s_{2} \\
& s_{1}>s_{2}
\end{aligned}
$$

THE WAVE IS "SQUEEZED" INTO
A SMALLED DIAMATER PIPE
c) $S W R=\frac{A_{1}+B_{1}}{A_{1}-B_{1}}=\frac{S_{2}}{S_{2}}$ FROM PART (a)
11)

8-13)
a)

$$
\begin{aligned}
& \omega_{0}=c \sqrt{\frac{5}{R V}} \\
& V=\frac{s_{1}}{l_{1}}\left(\frac{c}{w_{0}}\right)^{2} \\
& s=\pi r^{2}=\pi\left(5 \times 10^{-2}\right)^{2} \\
& L_{1}=L_{1}^{0} l_{d} \\
& =\frac{\ell d \theta}{16 g}=16\left(5 \times 10^{-2}\right) \\
& =\frac{16 \pi}{3 \pi}=\frac{16 \frac{6}{3} x}{3 \pi} \\
& \omega_{0}=2 \pi \times 30 \\
& C=343 \mathrm{~m} / \mathrm{sEC} \\
& V=\frac{3 \pi^{2}\left(8 \times 10^{-2}\right)^{2}}{16\left(8 \times 1 \sigma^{-2}\right)}\left(\frac{3.43^{2} \times 10^{4}}{4 \pi}\right) \\
& =\frac{24 \times 10^{-}}{16} \frac{(3.43)^{2}}{3.6} \times 10^{2} \\
& =\frac{4(3.43)^{2}}{16 \times 9} \\
& =\frac{118}{36}=328 \mathrm{~m}^{3}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \alpha_{t}=\left[1+\frac{c^{2}}{4 s^{2}\left(\omega \ell^{1} / s-c^{2} / \omega V\right)^{2}}\right]=1 \\
& =\left[1+\frac{c^{2}}{4\left(\omega l^{1}-s c^{2} / \omega V\right)^{2}}\right]^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[1+\frac{11.5 \times 10^{4}}{4\left(40 \cdot 16 \cdot 8 \times 10^{-2}-\frac{32(11.6)}{120 \times 3.20}\right)^{2}}\right]^{-1} \\
& =\left[1+\frac{11.8 \times 10^{4}}{4(512-9.6)^{2}}\right]-1
\end{aligned}
$$

$$
\begin{aligned}
& =\left[1+\frac{11.5 \times 10^{4}}{4(4.6)^{2} \times 10^{2}}\right]^{11} \\
& =\left[1+\left(\frac{2.5}{1.4}\right)\right]^{-1} \\
& =[1+17]^{-1} \\
& =\frac{16}{5}=0.0555(.5)
\end{aligned}
$$

12)

IV 7)

$$
\begin{aligned}
& c^{2}\left[\frac{\delta^{2} \theta}{\delta r^{2}}+\frac{1}{r} \frac{\delta \phi}{\delta r}+\frac{1}{r^{2}} \frac{\delta^{2} \phi}{\delta \phi^{2}}+\frac{\delta^{2} \rho}{S Z}\right]=\frac{\delta^{2} \rho^{2}}{\delta Q^{2}} \\
& \text { LET } P(r, \phi, z, t)=R(r) \Phi(\phi) z(z) H(t)
\end{aligned}
$$

$$
\begin{aligned}
& c^{2}\left[\frac{s a p(r)}{d r^{2}} \Phi(\phi) Z(z) H(\theta)+\frac{1}{r} \frac{s p(r)}{r} \Phi(\phi) Z(z) H(t)\right. \\
& +\frac{1}{r^{2}} R(r) \frac{d^{2} \Phi(\phi)}{d \phi^{2}} Z(z) H(t)+R(r) \phi(\phi) \frac{d z(z) H(t)]}{d z} \\
& =R(r) \Phi(d) Z(z) \frac{d^{z} H(t)}{d L^{2}} \\
& c^{2}\left[\frac{1}{R(r)} \frac{d R(r)}{d r^{2}}+\frac{1}{r R(r)} d R(r)+\frac{R(r) \Phi(\phi)}{d r}+\frac{d}{2} \Phi(\phi) \frac{d}{q}+\frac{\phi^{2}}{Z(z)} d^{2} z(z)\right] \\
& =\frac{1}{H(t)} \frac{d^{2}+(t)}{d t^{2}}=-L^{2} \\
& \frac{1}{H(t)} d^{2} H(t)=-\omega 2 \\
& \frac{d z H(t)}{d t^{2}}=-\omega^{2} H(t)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow H(t)^{2} A_{3} \text { cog wt }+B 3 \sin \omega t
\end{aligned}
$$

$$
\begin{aligned}
& c^{2}\left[\frac{1}{R(r)} \frac{d^{2} R(r)}{d r}+\frac{r R(R)}{r R(r)} d r(r)+\frac{1}{r^{2} \phi(\phi)} \frac{\left.d^{2} \phi(q)\right]=\omega^{2}-\frac{c^{2}}{d z} d^{2} z(z)}{d z z}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha^{2}-\left(\frac{\omega}{c}\right)^{2}=\text { constant }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-1}{z(z)} d^{2} z(z) \\
& d z\left(z(z)^{2}\right. \\
& \frac{d z}{2} \alpha^{2} z(z)
\end{aligned}
$$

$\Rightarrow Z(2) \otimes\left[A_{2} \cos \alpha E+B 2 A L \omega \alpha E\right]$

$$
\begin{aligned}
& \frac{1}{R(r)} d^{2} d R(r)+\frac{1}{R R(r)} d R(r)+\frac{1}{r^{2} \phi(\phi)} \frac{d^{2} \phi(\phi)}{d \phi}=\alpha^{2}-k^{2}=k=\frac{\omega}{e} \\
& \frac{1}{R(r)} d^{2} R(r)+\frac{1}{r R(r)} \frac{d R(r)}{d r}+\left(k^{2}-\alpha^{2}\right)=\frac{1}{r^{2} d(d)} \frac{1}{d \phi} \phi(r) \\
& \begin{array}{l}
R(r) d r e(r)+\frac{r}{r}(r) d R(r)+r^{2}\left(k^{2}-\alpha^{2}\right)=\Phi(\phi)^{\prime} d \phi(\phi) d \phi^{2}=+m^{2} \\
R(r) d r d
\end{array} \\
& \frac{1}{\phi(\phi)} \frac{d^{2} \phi(\phi)}{d d^{2} \phi(\phi)}=-m^{2} \\
& \frac{d^{\prime} \phi(\phi)}{d \phi^{2}}-m^{2} d(\phi) \\
& \stackrel{\Rightarrow}{\Rightarrow} \phi(\phi)=A_{1} \operatorname{cog} m \phi+B, \sin m \phi
\end{aligned}
$$

LEAVING:

$$
\begin{aligned}
& \frac{r^{2}}{R(r)} \frac{d^{2} R(r)}{d r^{2}}+R(r) d R(r)+r^{2}\left(k^{2}-\alpha^{2}\right)=m^{2} \\
& \frac{d^{2} R(r)}{d r^{2}}+\frac{d E(r)}{r}+\left[k^{2}=a^{2}-\left(\frac{m}{r}\right)^{2}\right] R(r)=0
\end{aligned}
$$

$$
\text { LET } k_{1}^{2}=k^{2}-\alpha^{2}
$$

$$
\begin{gathered}
L_{E} K_{1}=k-\infty \quad k_{2}^{2}+\frac{1}{r} \frac{R r}{d r}+\left[k+\left(\frac{m}{r}\right)\right] R(R)=0
\end{gathered}
$$

EQ. SIlO OF HAND OUT TEKT WHTET IS SOLVED BY EXPANDNG REF) INA PWN SERIES THE SOLUTION OR BESSEL E EQUATION RESUME
IN THE BESSEL FUNCTIONS OF THE FIRST

$$
\begin{aligned}
& 1<1 N 0 \quad(E A+5 \cdot 14) \\
& \Rightarrow R(r)= \\
&=J_{m}\left[k_{1}\left[\left(k^{2}-\infty^{2}\right)^{\frac{1}{2}}\right]\right.
\end{aligned}
$$

THEN:

$$
\begin{aligned}
& 0(r, q, z, t)=R(r) Q(\infty) \notin(Q) H \in t)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now. } 22.4972
\end{aligned}
$$

b) raduaban momenam NT/SEC?

a) Bugat modana $\frac{\text { NEWTONS }}{\text { SQUARE METER }}$
8) bavding momont NEWTOM-METERS

 sa

Eigenfunctres for a flat in a roctrguta ber of dimoesens l', 't,

$$
\begin{gathered}
P(x, n, 3, t)=\cos \frac{n_{x} \pi}{h_{x}} \cos \frac{n_{y} \pi}{L_{y}} \cos \frac{n_{s} \pi}{L_{y}}\left[A_{n_{x} n_{y} n_{3}} \cos W_{n_{x} n_{y} n_{3}}+t B_{n_{x} n_{y} n_{3}} \operatorname{sen} W_{n_{x} n_{y} n_{s}} t\right] \\
\omega_{n_{x} n_{y} n_{y}}=\pi c \sqrt{\left(\frac{n_{x}}{L_{x}}\right)^{2}+\left(\frac{n_{y}}{L_{y}}\right)^{2}+\left(\frac{n_{3}}{L_{y}}\right)^{2}} \quad \begin{array}{l}
n_{x}=0,1,2,3 \ldots \\
n_{y}=0,1,2,3 \ldots \\
n_{3}=0,1,2,3 \ldots
\end{array}
\end{gathered}
$$

Radiation Fran Poston Vibnatins in an infinite baftle

Point for which $\frac{n}{a} \ll 1$

$$
\begin{aligned}
\otimes & =\frac{i p c k U_{0} a^{2}}{2 \pi} e^{i(\mu t-k \lambda)}\left[\frac{2 J_{1}(k a \operatorname{sen} \theta)}{k a \operatorname{sen} \theta}\right] \\
& =\frac{i p c k U_{0} a^{2}}{2 \pi} e^{i(\omega t-h)}\left[1-\frac{(k a \operatorname{sen} \theta)^{2}}{8}+\frac{(k a \sin \theta)^{4}}{192}+\cdots\right]
\end{aligned}
$$

For pount on aseas

$$
\dot{\theta}=-\beta c U_{0} e^{i n t}\left[e^{-a k \sqrt{n^{2}+a^{2}}}-e^{2 k n}\right]
$$

Radiation Impedance of Pston Vibating in meinrre Bateses

$$
\begin{aligned}
Z_{M} & =\rho<\pi a^{2}\left[R_{1}\left(2 k_{a}\right)+e X_{1}\left(2 h_{a}\right)\right] \\
& \simeq \rho \operatorname{li} a^{2}\left[\frac{\left(R_{a}\right)^{2}}{2}+\varepsilon \frac{8}{3 \pi} k_{a}\right] \quad \text { of } h a \ll 1
\end{aligned}
$$

Speed of sound in air $343 \mathrm{~m} / \mathrm{sec}$ at $\left.20^{\circ}\right\}(\rho C)_{\text {air }}=415$
$\left.\begin{array}{l}\begin{array}{l}\text { Speed of sound un wator } \\ \text { Density of wister }\end{array} 1.48 \times 10^{3} \mathrm{~m} / \mathrm{sen} \\ 1.026 \times 10^{3} \mathrm{hg}_{\mathrm{g}} \mathrm{m}^{3}\end{array}\right\} \quad \rho C=1.48 \times 10^{8}$

$$
\because
$$

(of

$$
\begin{aligned}
& u_{m, \%}=\pi d W^{2}+h^{2} \\
& \begin{array}{l}
m=1,2, s, \ldots \ldots \\
n=1, n, \ldots \ldots
\end{array}
\end{aligned}
$$

BOB MARK

c) WATTMAMETEAL
d) NONE L
e) $N \in M T G M E$

$Q \int N B N+$
317

913

2) $\omega_{n_{x} n_{y} n_{g}}=\pi c \sqrt{\left(\frac{n_{x}}{L_{x}}\right)^{2}+\left(\frac{n_{x}}{L_{y}}\right)^{2}+\left(\frac{n_{z}}{L_{z}}\right)^{2}}$

$$
L_{x}=L_{y}=0.1 \quad L_{z}=2
$$

$$
\begin{aligned}
& 0=\left(\cos _{x} \cos _{2}+\alpha_{2}\right)\left[A \cos _{x+x}+B \sin t\right]
\end{aligned}
$$

FUNDEMENTAL (LOWEST NON-zERO) FREGUENCY:

$$
\begin{aligned}
& n_{x}=n_{y}=0 \quad ; n_{z}=1 \\
& \omega_{0 O 1}=\frac{\pi C}{L z}=f_{0 O}=\frac{\omega_{001}}{2 \pi}=\frac{c}{2 L z}=\frac{343}{4}=85.8 H z \\
& \text { THE WALES PARE THE ONLY} \\
& \text { NOAL PLNS (YV }=0)
\end{aligned}
$$

How about premsere madal planes?

$$
\begin{aligned}
& \text { 3) } A) P=B a \nabla \cdot \vec{s} \\
& -\nabla \rho=\rho_{0} \frac{s^{2} \vec{b}}{\delta t^{2}} \\
& \text { a) } P=-B_{a}\left(\frac{\delta \delta}{\delta x}+\frac{\delta \eta}{\delta Y}+\frac{\delta \varphi}{\delta z}\right) \\
& \frac{\delta \phi}{\delta x}+\frac{\delta \theta}{\delta Y}+\frac{\delta \theta}{\delta z} \hat{m} \rho_{0}\left[\frac{\delta^{2} \delta t^{2}}{\delta t^{2}}+\frac{\delta^{2} n}{\delta t^{2}}+\frac{\delta^{2}}{\delta t^{2}}\right] \\
& \frac{\delta^{2} \rho}{\delta t^{2}}=B_{a}\left[\frac{\delta}{\delta x} \frac{s^{2} s}{\delta t^{2}}+\frac{\delta}{\delta y} \frac{s^{2} n}{\delta t^{2}}+\frac{s}{s z} \frac{s^{2} Q^{2}}{\delta t^{2}}\right] \\
& \frac{\delta^{2} Q}{\delta X^{2}}+\frac{\delta^{2} Q}{\delta Y^{2}}+\frac{\delta^{2} Q}{\delta Z^{2}}=\rho_{0}\left[\frac{\delta}{\delta X} \frac{\delta^{2} \delta^{2}}{\delta t^{2}}+\frac{\delta}{\delta Y} \frac{\delta^{2} \eta}{\delta t^{2}}+\frac{\delta}{S Z} S^{2} \rho\right]
\end{aligned}
$$

THUS:

$$
\begin{aligned}
& \frac{1}{p_{0}}\left[\frac{s^{2} \rho}{\delta x^{2}}+\frac{\delta^{2} \rho}{\delta y^{2}}+\frac{\delta^{2} q}{\delta z^{2}}\right]=\frac{1}{B_{a}} \frac{\delta^{2} \theta}{\delta t^{2}} \\
& c^{2}\left[\frac{\delta^{2} \rho}{\delta x^{2}}+\frac{\delta^{2} p}{\delta y^{2}}+\frac{\delta^{2} \eta}{\delta z^{2}}\right]=\frac{\delta^{2} p}{\delta t^{2}} \Rightarrow c=\sqrt{B_{q}}
\end{aligned}
$$

4)

a)

$$
\begin{aligned}
& \left.P_{i}=A_{1} e^{j\left(\omega t-x \cos \phi_{1}-Y \sin \phi_{1}\right)} \Rightarrow U_{i}=\frac{A_{1}}{P_{C}} e^{i\left(\omega t-x \cos \phi_{1}-Y \sin \phi_{1}\right.}\right) \\
& \left.P_{r}=B_{1} e^{i\left(\omega t+x \cos \phi_{1}-Y \sin \phi_{1}\right)} \Rightarrow U_{R}=\frac{B_{1}}{D_{1}} e^{i(\omega t}\right) \\
& \rho_{t}=A_{2} e^{i\left(\omega t-x \cos \phi_{2}-Y \sin \phi_{2}\right)} \Rightarrow U_{t}=\frac{A_{2}}{P_{2} C_{2}} e^{i\left(-\sin \phi_{1}\right.} \frac{\sin \phi_{2}}{C_{2}} \\
& \text { WHRE: }
\end{aligned}
$$

b) BOUNDRY CONDITIONS

$$
\begin{aligned}
& \left.P_{i}\right|_{x=0}\left(\phi_{1}=\left.\rho_{r}\right|_{x=0} \cot _{2} \phi_{2}\right. \\
& \left.U_{L}\right|_{x=0} \cos \phi_{1}=\left.U_{r}\right|_{x=0} \cos \phi_{2}
\end{aligned}
$$

c) $\left[\beta_{i} U_{i}\right]_{\gamma}=\left[P_{r} U_{n}\right]_{N}+\left[p_{t} U_{t}\right]_{x}$

$$
x ?
$$

WHERE ALL P'S 曹U'S ARE EIRAGMITVDES
b) $z_{L}=\frac{\left.P\right|_{X=-L}}{\left.U\right|_{x=-L S}}$

$$
p=A e^{i \omega t}\left[e^{-i k x}+e^{i \omega t}\right]
$$

$$
=2 A e^{i \omega t} \cos k x
$$

$$
u=\frac{-A}{p c} e^{i \omega t}\left[e^{i k x}-e^{-i k x}\right]
$$

$$
=\frac{-i 2 A}{p^{c}} e^{i \omega t} \sin k x
$$

$$
\Rightarrow z_{-L}=\frac{Q^{2} S^{i \omega} \cos k L}{\frac{i \Delta A}{p C} e^{i \omega t} \sin L}
$$

$$
=\dot{O} C \cot R L
$$

C) RESONANCE WHEN $\cot K L=0$

$$
\begin{aligned}
& \Rightarrow \cos K L=0 \\
& \cos \frac{\omega L}{C} L=0
\end{aligned}
$$

THUS $\quad \begin{aligned} & \quad \frac{u}{c} L=\frac{\pi}{2} \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots \frac{(2 n+1) \pi}{2}, \ldots \\ & u\end{aligned}$

$$
\begin{aligned}
& \omega_{n}=\frac{(2 n+1) \pi c}{2 L} \\
& f_{n}=\frac{u_{n}}{2 \pi}=\frac{(2 n+1) C}{4 L}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5) a) } P=A e^{i(\omega t-k x)}+B e^{i(\cot t k x)} \\
& U=\frac{A}{\rho c} e^{i(\omega t-k x)}-\frac{B}{p C} e^{i(\omega t+k x)} \\
& \left.u\right|_{x=0}=0=\frac{A}{p c} e^{i \omega t}-\frac{B}{p c} e^{i \omega t} \\
& O=A-B \\
& \therefore A=B \\
& e^{j \theta}=\cos \theta+\min \theta \\
& e^{j \theta} \cdot \cos \theta-j \sin \theta \\
& e^{j \theta} e^{j \theta}=j 2 \operatorname{din} \theta \\
& \Rightarrow \sin c=\frac{e^{j-} e^{j}}{d 2}
\end{aligned}
$$

$6 x$

$$
\begin{gathered}
P\left(r_{1} \theta\right)=\frac{i \rho c k U_{0} a^{2}}{2 \pi} e^{i(\omega t-k r)}\left[\frac{2 J_{1}(k a \sin \theta)}{k a \sin \theta}\right] \\
P\left(r, \frac{\pi}{2}\right)=0=\frac{i \rho c k U_{0} a^{2}}{2 \pi} e^{i(\omega t-k r)}\left(\frac{2 J_{1}(k a)}{k a}\right) \\
\rho_{A}=\frac{\rho c k U_{0} a^{2}}{2 \pi}\left[\frac{2 J_{1}(k a \operatorname{in} \theta)}{k a \sin \theta}\right] \\
O_{A}\left(\frac{\pi}{2}\right)=\frac{\rho c k U_{0} a^{2}}{2 \pi} \frac{2 J_{1}(k a)}{k a}=0 \\
\frac{2 J_{1}(k a)}{k a}=0
\end{gathered}
$$

therein only 1 ere measure ed
So (Ka) ※3.6 \& ERROM GRAPH) AND: FIRST (0) OF $J_{1}(x) / x$

$$
a \underline{e} \frac{3 \cdot b}{k}
$$

$$
=\frac{3.6 c}{\omega}
$$

$$
=\frac{(3.6)(3.43) \times 10^{3}}{2 \pi 3.5 \times 10^{3}}
$$

$$
=\frac{123.5 \times 10^{-2}}{23.9}
$$

$$
\cong 5.18 \mathrm{~cm}
$$

$$
d=2 a \cong 10.36 \mathrm{~cm}
$$

7)

ADIABATICBULLE MODULLS = jP

$$
\underbrace{L_{i}}_{\substack{\text { GAS } \\ \sigma L \pi a^{2}}}
$$

$$
C=\frac{v}{\rho^{2}} \text { in } \frac{\sigma^{2}}{q}
$$

MASS OF GAS TURNS OUT TO NOT 3 E BIG ENOUGH, SO ADD (PCHazR(aka) = Miff?

$$
\begin{aligned}
& e_{n}=\operatorname{pcm} a^{2} X_{1}(2 k a) \\
& e^{\prime}=L+\ln p \\
& m^{\prime}=\sigma L H a^{2}+m, m
\end{aligned}
$$

RESONANCE OCCURS WHEN THE NEW IMPEDANCE IS MINIMUM.

$$
\omega_{0}=\frac{1}{\sqrt{M C}}
$$

8)

$$
\begin{aligned}
& q_{i}=A_{1} e_{i}^{i(\omega t-k x)}
\end{aligned}
$$

$$
\begin{aligned}
& P_{1}=C_{1} e^{i(\omega t-k y)} \\
& P_{2}=c_{2} e^{i(\cos t+i)} \\
& \left.P_{r}\right|_{x=0}=\left.P_{b}\right|_{x=0}=\left.O_{0}\right|_{X=0} \Rightarrow A_{1}+B_{1}=A 2 \\
& \left.S U_{L}\right|_{x=0}=\left.S U_{R}\right|_{x=0}+\left.S_{b} U_{U P}\right|_{V=0} \\
& \frac{1}{P_{V} / s U_{L}}=\frac{1}{P_{R / S} U_{n}}+\frac{1}{P_{u p} / S_{\text {b }} U_{u m}} \\
& \frac{1}{z_{R}}=\frac{1}{z_{R}}+\frac{1}{z_{n}} \\
& Z_{i}=\frac{Z_{n} Z_{u n}}{Z_{n}+Z_{u p}}
\end{aligned}
$$

$$
\begin{aligned}
& z_{R}=\frac{p c}{\frac{p c}{s}+z_{0 p}} \\
& 0_{\text {up }}=C_{1} e i(\cos t+\theta) \\
& U_{\text {up }}=\frac{C_{1}}{C_{C}} e^{\left.i(\cdots)+C_{2} e^{i(\omega t+k}+i\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \left.U_{u p}\right|_{y=L}=0=\frac{c_{1}}{\rho^{c}} e^{i(\omega t-k)}-\frac{c_{2}}{p e} e^{i(\omega t+k y)} \\
& \Rightarrow C_{1} e^{-i k L}=C_{2} e^{i k L} \\
& c_{1}=c_{2} e^{i 2 k L} \\
& P_{\text {up }}=C_{2}\left[e^{i 2 k n} e^{i(\cos t-k Y)}+e^{i(\cos t+k Y)}\right] \\
& U_{p}=\frac{c_{2}}{p_{c}}\left[e^{\text {izk }} e^{\text {i(witht) }}-e^{i(a t+k y)}\right.
\end{aligned}
$$

so $z_{U p}=\left.\frac{P_{U P}}{S_{b U} U_{D P}}\right|_{Y=0}$

$$
\begin{aligned}
& =\frac{p c}{S_{b}} \frac{e^{i k L}+1}{e^{12 k}-1} \\
& =\frac{\rho_{c}}{i S b} \frac{\left[e^{i k L}+e^{-i k L}\right] / 2}{\left[e^{i k L}\right] / i k} \\
& =\frac{p c}{i S_{b}} \operatorname{cotkL}
\end{aligned}
$$

$$
P_{\delta}(8-b)
$$

50:

$$
\begin{aligned}
& z_{L}=\frac{p c\left[\rho_{s}\left[s_{b} \cot k L\right]\right.}{\frac{p}{S}+\left[i S_{b} c o t k L\right]} \\
& =\frac{(D C S)(p G E s b)}{\frac{D C}{S} \tan K L+\frac{R E}{i s b}}
\end{aligned}
$$

now $z_{L}=\left.\frac{Q_{L}}{U_{L}}\right|_{X=0}$

$$
=\frac{p(A,+B,)}{S(A,-B,)}=\frac{(p c / S)\left(-i p C_{L} S_{2}\right)}{\frac{p c}{S} \tan k L+p C_{i} S_{b}}
$$

(over)

$$
\begin{aligned}
& \frac{\text { Pue }}{S U_{u p}-\frac{c_{1}}{1}+c_{2}+\left(c_{1} c_{2}\right)}=\frac{1}{p_{c}}\left(\frac{c_{1}+c_{2}}{c_{1}-c_{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A_{1}+B_{1}}{A_{1}-B_{1}}=\frac{-i \rho C S}{\rho C S_{b} t a n k L-\rho C S} \\
& \left(A_{1}+B_{1}\right)\left(p \subset S_{n} t_{\text {tan }} k L p+S\right)=\left(A_{1}-B_{1}\right)(\text {-ipcS }) \\
& B_{1}\left[\rho C s_{b} \operatorname{tank} k L^{2}-\bar{p}-i p \subset S\right] \\
& =A_{1}\left[-p c_{b} \tan k l+\rho C s \quad-i p c s\right] \\
& \frac{B_{1}}{A_{1}}=\frac{-\rho C S_{b} \tan k L+\rho C S(j-1)}{\rho C S_{b} \tan k L-\rho C S(j+1)} \\
& \text { Now: } A_{1}+B_{1}=A_{2} \\
& 1+\frac{B_{1}}{A_{1}}=\frac{A_{2}}{A_{1}} \\
& \frac{A_{2}}{A_{1}}=\frac{-\rho \sin \tan k-\rho \operatorname{cs}(j-1)+\rho c s t a n k-\rho c s(j+1)}{\rho c s_{b} \tan k i-\rho c s(j+1)} \\
& =\frac{-2 \rho e s b \tan k L-j 2 p c s}{\rho e s b \tan k L-p<s+j p l s}
\end{aligned}
$$

$$
\begin{aligned}
& \left(P_{8} 8-c\right)
\end{aligned}
$$

$$
\begin{aligned}
&\left.U_{u p}\right|_{y=L}=0=\frac{c_{1}}{p c^{i}} e^{i(\omega t-k t)}-\frac{c_{2}}{p^{\prime}} e^{i(\omega t+k y)} \\
& \Rightarrow c_{1} e^{-i k L}=c_{2} e^{i k L} \\
& c_{1}=c_{2} e^{i 2 k L} \\
& P_{0 p}= c_{2}\left[e^{i 2 k L} e^{i(\omega t-k y)}+e^{i(\omega t+k y)}\right] \\
& U_{p}= \frac{c_{2}}{p c}\left[e^{i 2 k L} e^{i(\omega t-k y)}-e^{i(\omega t+k y)}\right.
\end{aligned}
$$

so $Z_{u p}=\left.\frac{p_{u p}}{S_{b U P}}\right|_{y=0}$

$$
\begin{aligned}
& =\frac{p_{c}}{S_{b}} \frac{e^{i 2 k L}+1}{e^{i k L}-1} \\
& =\frac{\rho_{c}}{\left.i S_{b} i k L+e^{-i k L}\right] / 2}\left[e^{i k L} e^{-i k L}\right] / i 2 \\
& =\frac{p c}{i S_{b}} \operatorname{cotkL}
\end{aligned}
$$

so:

$$
\begin{aligned}
& =\frac{(p c)(p)\left(c_{s b}\right)}{\frac{D C a n}{S} \tan +\rho_{s}}
\end{aligned}
$$

now $z_{L}=\left.\frac{D_{L}}{U_{L}}\right|_{x=0}$

$$
=\frac{P\left(A_{1}+B,\right)}{S\left(A_{1}-B_{1}\right)}=\frac{(P C / S)\left(-i p C S_{b}\right)}{\frac{P C}{S} \tan k L+P C S_{i} S_{b}}
$$

(OVER)

$$
\begin{aligned}
& \left(\begin{array}{l}
P_{8} 8 d
\end{array}\right) \\
& \left.\left|\frac{A_{2}}{A_{1}}\right|^{2}=\operatorname{TRANSMESION} \text { PWR. COEEFICAENT}\right) \\
& \left|\frac{A_{2}}{A_{1}}\right|^{2}=\frac{4 S_{b}^{2} \tan ^{2} k L+4 S^{2}}{\left(S_{b} \tan ^{2} k L-S\right)^{2}+5}
\end{aligned}
$$

8)

$$
\begin{aligned}
& \theta_{i}=A_{1} e^{i(\omega t-k x)} \\
& \begin{array}{l}
p_{n}=B_{1} e^{i(\omega t+k x)} \\
p_{t}=A_{2} e^{i(\omega t-k x)} \quad(p g+-k y)
\end{array} \quad(p-a) \\
& P_{1}=C_{1} e^{i(\omega t-k y)} \\
& P_{2}=c_{2} e^{i(\omega t+k y)} \\
& \left.P_{r}\right|_{x=0}=\left.P_{L}\right|_{x=0}=\left.P_{0}\right|_{Y=0} \Rightarrow A_{1}+B_{1}=A \\
& \left.S U_{L}\right|_{X=0}=\left.S U_{R}\right|_{X=0}+\left.S U_{U P}\right|_{Y=0} \\
& \frac{1}{P_{R} / s_{l}}=\frac{1}{P_{R} / s_{1} U_{n}}+\frac{1}{P_{U P} / s_{b} U_{V A}} \\
& \frac{1}{z_{R}}=\frac{1}{z_{R}}+\frac{1}{z_{\text {up }}} \\
& Z_{i}=\frac{z_{n} Z_{u n}}{Z_{n}+Z_{u p}} \\
& \frac{P_{t}}{S U_{t}}=\frac{B_{1} e^{-C D}}{S C}=\frac{D C}{S} \\
& z_{L}=\frac{p c}{\frac{p c}{s}+z} \\
& \rho_{u p}=C_{1} e^{i(\cos t+k)} \\
& U_{\text {up }}=\frac{C_{1}}{C_{0}} e^{i\left(m+C_{2} e^{i(\operatorname{coth}+\cdots}-\frac{C_{2}}{\rho} e^{i}\right)}
\end{aligned}
$$

7)

MASS OF GAS TURNS OUT TO NAT BE BIG ENOOGH,SO AOD (PC\#arR, (a /Ra) = Mede?

$$
\begin{aligned}
& l_{\text {\#k }}=\operatorname{pc\pi }^{2} X_{1}(2 k q) \\
& e^{\prime}=L+\operatorname{Lgq} \\
& M^{\circ}=\sigma L H a^{2}+M Q
\end{aligned}
$$

RESONANCE OCCURS WHEN THE NEW IMPEDANCE IS MINIMUM.

$$
\omega_{0}=\frac{1}{\sqrt{M C}}
$$

68

$$
\begin{gathered}
P(r, \theta)=\frac{p c k U_{0} a^{2}}{2 \pi} e^{i(\omega t-k r)}\left[\frac{2 J_{1}(k a \sin \theta)}{k a \sin \theta}\right] \\
P\left(r, \frac{\pi}{2}\right)=0=\frac{i p c k v_{0} a^{2}}{2 \pi} e^{i(\omega t-k r)}\left(\frac{2 J_{1}(k a)}{k a}\right) \\
P_{A}=\frac{\rho c k U_{0} a^{2}}{2 \pi}\left[\frac{2 J_{1}(k a \sin \theta)}{k a \operatorname{kit}}\right] \\
P_{A}\left(\frac{\pi}{2}\right)=\frac{\rho c k U_{0} a^{2}}{2 \pi} \frac{2 J_{1}(k a)}{k a}=0 \\
\frac{2 J_{1}(k a)}{k a}=0
\end{gathered}
$$

therés only 1 zerc measured
So (KQ) ※3.6 \& (EROMGRAPH)

$$
\begin{aligned}
& A N D: \\
& a \simeq \frac{3.6}{k} \\
&=\frac{3.6 c}{\omega} \\
&=\frac{(3.6)(3.43) \times 10^{3}}{2 \pi} 3.5 \times 10^{3} \\
&=\frac{1.23 .5 \times 10^{-2}}{23.9} \\
& \simeq 5.18 \mathrm{~cm} \\
& d=29 \approx 10.36 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5) a) } P=A e^{i(\omega t-k x)}+0 e^{i(\omega t+k x)} \\
& U=\frac{A}{\rho C} e^{i(\omega t-k x)}-\frac{B}{p C} e^{i(\omega t r k x)} \\
& \left.u\right|_{x=0}=0=\frac{A}{\rho c} e^{i \omega t}-\frac{B}{\rho c} e^{i \omega t} \\
& O=A-B \\
& \therefore A=B \\
& \text { b) } Z_{L}=\frac{\left.P\right|_{X=-L}}{U X_{X=-L}} \\
& \begin{array}{l}
e^{j \theta}=\sin \theta+j \sin \theta \\
e^{j \theta} \cdot \cos \theta-j \sin \theta
\end{array} \\
& \begin{array}{l}
e^{j \theta} \cos \theta-j \sin \theta \\
\theta=e^{j} \theta=j 2 \sin \theta .
\end{array} \\
& e^{j \theta} e^{j \theta}=e^{2} e^{2 \lambda} e^{j \theta} \\
& \Rightarrow \sin 0=\frac{e^{+\theta} e^{j}}{d 2} \\
& p=A e^{i \omega t}\left[e^{-i k x}+e^{i \omega t}\right] \\
& =2 A e^{i \omega t} \operatorname{cog} k x \\
& U=\frac{-A}{p c} e^{i \omega t}\left[e^{i k x}-e^{-i k x}\right] \\
& =\frac{-i 2 A}{\rho c} e^{i \omega t} \sin k x \\
& \Rightarrow z_{a L}=\frac{\frac{2 E i \omega t}{} \cos K L}{\rho C} D^{i \omega t} \sin L L \\
& \text { - ipc cotkL }
\end{aligned}
$$

c) RESONANCE WHEN COtKL=O

$$
\begin{aligned}
& \Rightarrow \cos K L=0 \\
& \cos \frac{L}{C} L=0
\end{aligned}
$$

THUS $\frac{\omega}{c} L=\frac{\pi}{2} \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots \frac{(2 n+1) \pi}{2}, \ldots$

$$
\begin{aligned}
& \omega_{n}=\frac{(2 n+1) \pi C}{2 L} \\
& f_{n}=\frac{\omega_{n}}{2 \pi}=\frac{(2 n+1) C}{4 L}
\end{aligned}
$$

Geremon Thwamatow

$$
\begin{aligned}
& m=j, n+3, \ldots . . \\
& n=1, z, b, \ldots
\end{aligned}
$$

$!$

1.) 9

c) WATTY MEYGNL
d) NONE L
e) NEWTONG $\operatorname{SQUARE} M E$

$$
\begin{aligned}
& f) N E W Y e N M E T r \\
& B) N O N
\end{aligned}
$$

$$
\begin{array}{rl}
\text { (1)c) } I & =\frac{1}{r} \int_{b}^{p} E y d t \\
& =(M a)\left(\frac{L}{T}\right) \\
R & K X X X=d z \\
\text { FORCE } K \frac{M}{S E C}
\end{array}
$$

$$
P C=\frac{M L}{L^{3} S E C}=\frac{M L}{L^{2} S E C}
$$

FORCE.MASS

$$
M K=\frac{\text { EOBCEMMSS }}{V Q L O C T Y}
$$

$$
G \leq \frac{S y z}{D}=\frac{1}{Y} \frac{F}{A}
$$

$$
E_{x x}=\frac{1}{y S_{y x}}=\frac{k}{A}
$$

$$
\frac{M L^{2}}{S E C} \frac{E}{L^{2}}
$$

θ

2) $\omega_{n_{x} n_{y} n_{k}}=\pi c \sqrt{\left(\frac{n_{x}}{L_{x}}\right)^{2}+\left(\frac{n_{x}}{L_{y}}\right)^{2}+\left(\frac{n_{z}}{l_{z}}\right)^{2}}$

$$
L_{x}=L_{y}=0.1 ; L_{z}=2
$$

$$
\begin{aligned}
& 0=\left(\operatorname{cog}_{x} \cos +\cos _{2}\right)\left[A \cos _{x r z}+B \sin t\right] \\
& \frac{-\sqrt{6}}{\delta t}=?
\end{aligned}
$$

FUNDEMENTAL (LOWEST NON-EERO) FREGUENCY:

$$
\begin{aligned}
& n_{x}=n_{y}=0 \quad ; n_{z}=1 \\
& \omega_{001}=\frac{\pi C}{L z}=f_{001}=\frac{\omega_{001}}{2 \pi}=\frac{c}{2 L z}=\frac{343}{4}=85.8 \mathrm{~Hz} \\
& \text { THE WALLS ARE THE ONLY } \\
& \text { NODAL PLNES (YV }=0)
\end{aligned}
$$

How abunt preasuse modal dlanes?
3) $a\rangle \theta=\beta a \nabla \cdot \vec{A}$

$$
-\nabla \rho=\rho_{0} \frac{\delta^{2} \frac{s}{\delta} t^{2}}{}
$$

$$
\begin{aligned}
& \text { a) } P=B_{a}\left(\frac{\delta \xi}{\delta x}+\frac{\delta \pi}{g y}+\frac{\delta g}{\delta z}\right) \\
& \frac{\delta p}{\delta x} i+\frac{\delta \theta}{\delta y}+\frac{\delta Q}{\delta z} \hat{R} \rho_{0}\left[\frac{\delta^{2} \delta}{\delta t^{2}}+\frac{\delta^{2} x^{2}}{\delta t^{2}}+\frac{\delta^{2} \rho^{2} \hat{h}}{\delta t^{2}}\right] \\
& \frac{\delta^{2} \rho}{\delta t^{2}}=B_{a}\left[\frac{\delta}{\delta x} \frac{\delta^{2} \delta}{\delta t^{2}}+\frac{s}{\delta Y} \frac{\delta^{2} n}{\delta t^{2}}+\frac{S}{\delta z} \frac{s^{2} Q}{\delta t^{2}}\right] \\
& \frac{\delta^{2} \theta}{\delta x^{2}}+\frac{\delta^{2} \phi}{\delta y^{2}}+\frac{\delta^{2} p}{\delta Z^{2}}=\rho_{0}\left[\frac{\delta}{\delta x} \frac{\delta^{2} \delta}{\delta t^{2}}+\frac{\delta}{\delta y} \frac{\delta^{2} n}{\delta t^{2}}+\frac{\delta}{\delta z} \frac{\delta^{2} q^{2}}{\delta t^{2}}\right]
\end{aligned}
$$

THUS:

$$
\begin{aligned}
& \frac{1}{p_{0}}\left[\frac{s^{2} p}{\delta x^{2}}+\frac{\delta^{2} \rho}{\delta y^{2}}+\frac{\delta^{2} q}{\delta z^{2}}\right]=\frac{1}{B_{a}} \frac{\delta^{2} \rho}{\delta t^{2}} \\
& c^{2}\left[\frac{\delta^{2} \rho}{\delta x^{2}}+\frac{\delta^{2} p}{\delta y^{2}}+\frac{\delta^{2} \eta}{\delta z^{2}}\right]=\frac{\delta^{2} p}{\delta t^{2}} \Rightarrow c=\sqrt{B_{q}}
\end{aligned}
$$

4)

a)

$$
\begin{aligned}
& P_{i}=A_{1} e^{j\left(\omega t-x \cos \phi_{1}-Y \sin \phi_{1}\right)} \Rightarrow U_{i}=\frac{A_{1}}{P_{C} e^{i\left(\omega t-x \cos \phi_{1}-r \sin \phi\right.}} \\
& \left.P_{r}=B_{1} e^{i\left(\omega t+x \cos \phi_{1}-Y \sin \phi_{1}\right)} \Rightarrow U_{R}=-{P_{1}}_{C_{1}} e^{i\left(\omega t-x \cos \phi_{2}-Y \sin \phi_{2}\right)} \Rightarrow U_{t}=\frac{A_{2}}{\rho_{2} C_{2}} e^{i(}\right) \\
& \left.P_{t}=A_{2} e^{i(\omega}\right) \\
& \text { WHERE: } \frac{\sin \phi_{1}}{C_{1}}=\frac{\sin \phi_{2}}{C_{2}}
\end{aligned}
$$

b) BOUNDRY CONDITIONS

$$
\begin{aligned}
& \left.P_{k}\right|_{x=0}\left(\phi_{1}\right)=\left.P_{x=0}{\cos \phi_{2}}^{U_{L}}\right|_{x=0} \cos \phi_{1}=\left.\theta_{r}\right|_{x=0} \cos \phi_{2}
\end{aligned}
$$

c) $\left[\mathcal{P}_{i} U_{i}\right]_{x}=\left[P_{r} U_{n}\right]+\left[p_{t} U_{t}\right]_{x}$

$$
?
$$

WHERE ALL P'S \& US ARE EIMAGMITVDES

$$
\begin{aligned}
& \text { WHERE ALL } \frac{\left|A_{1}\right|^{2}}{\rho_{1} C_{1}} \cos \phi_{1}=\frac{\left|B_{1}\right|^{2 N}}{\rho_{1} C_{1}} \operatorname{cog} \phi_{1}+\frac{\left|A_{2}\right|^{2}}{\rho_{2} C_{2}} \operatorname{cN1} \phi_{2}
\end{aligned}
$$

B, Boske
E. Kingson A. Prey
(2. Enates
A. B. Randaly
a.B. Lindeay

- Mo Lindeay
T.W.s. feygergh

B, H.B. Steveng \& A.E. Bates

B, Lamb

 Cambedger hase isgat
 N. X . 8960)

Aronstics
(Wan Wossrand, N, Y, 2950)

The The90 9ic sound
$\frac{\text { Acousticund Uibugtonat }}{\text { Ehugus }}$
 N.Y. 1967%

KINSLER G FREY

Dates

Dec. 5-14

14-23
Jan. $8-17$
$\left\{\begin{array}{l}17-23 \\ 23-\text { Feb. } 1\end{array}\right.$
Feb. 1 -Feb. 9
$9-27$

Problems

Due

Dec. 14
11 Prob. 2, 3, 4, 6, 9, 11, 14 23

12 Prob. 1, (3), 8, 13, 16, 19, (23) Jan. 17
13 Prob. 1, 2, 5, 7, 9, 10
Jan. 23
14 Prob. 1, 3, 4, 6, 8, 14, 19, 21 Feb. 1
15 Prob. 1, 2, 6, 7, 10, 17, 20, 25 Feb. 9
Finish paper
(0-1)a) $\gamma=\frac{\phi^{2} R_{r}}{\phi^{2}\left(R_{r}+R_{m}\right)+R_{E} Z_{m}^{2}}$
EXCEPT IN THE IMMEDIATE VICINITY OE RESONANCE:

$$
R_{E} Z_{m}^{2} \gg \phi^{2}\left(R_{r}+R_{m}\right)
$$

LEAVING: $\frac{\phi^{2} R R_{r}}{R_{E}} Z_{m}^{2}$
FOR HIGH FREQUENCIES, $R_{1}(x) \sim 1$ AND $X_{1}(x) \sim O$

$$
\Rightarrow z_{m}=z_{r}+z_{c}
$$

$$
\begin{aligned}
& =\left(R_{r}+R_{m}\right)+j\left[\omega m-\frac{s}{\omega}+x_{r}\right] \\
& =\rho_{0} c \pi a^{2} R_{1}\left(2 \frac{\omega q}{c}\right)+R_{m}+j\left[\omega m-\frac{s}{c a}+\rho_{0} c \pi a^{2} x_{1}\left(\frac{2 \omega a}{c}\right)^{\prime}\right. \\
& \simeq \rho_{0} c \pi a^{2}+R_{m}+j\left[\omega m-\frac{s}{c}\right]
\end{aligned}
$$

FOR HIGH ENOUGH FREQUENCY, THE SYSTEM IS MASS CONTROUEO,
$z_{m}=p_{0} C \pi a^{2} \cdot R_{m}+i[\omega m]$
AND THE FREQUENCY PROPORTIONED
REACTANCE BECOMES LARGE WITH RESPECT
TO THE CONSTANT RESISTANEE:V

$$
\begin{aligned}
& z_{m}=j \omega m \\
& z_{m}^{2}=(\omega m)^{2}
\end{aligned}
$$

SUBSTITUTING:

$$
n=\frac{\phi^{2} R r}{R_{E} \omega^{2} m^{2}}
$$

b) $f=10^{3}$
i)

$$
\begin{aligned}
& \text { Fore } n=\frac{\phi^{2} R_{r}}{\phi^{2}\left(R_{r}+R_{m}\right)+R_{R} Z_{m}^{2}} \\
& R_{n}=13 R_{1}\left(3.66 \times 10^{-3} \mathrm{f}\right) \\
& =13 R_{1}(3.66) \\
& =(13)(0.941)=12.5 \\
& x_{r}=13 x_{1}\left(3.66,10^{-2} y\right) \\
& =13 x_{1}(3.66) \\
& =13(0.601) \\
& =7.61 \\
& z_{m}=z_{n}+z_{c} \\
& =\left(R_{r}+R_{m}\right)+j\left(\omega m-\frac{5}{4}+X_{r}\right) \\
& =(12.5+1)+d\left(2 \pi \times 10^{3} \times 10^{-2}+7.81-\frac{2 \times 10^{3}}{2 \pi \times 10^{3}}\right) \\
& =13.5+j(62.8+7.81-0.32) \\
& =13.5+\frac{d}{d}(70.3) \\
& z_{m}^{2}=1.35^{2} \times 10^{2}+7.03^{2} \times 10^{2} \\
& (1.82149 .5) \times 10^{2} \\
& =51.3 \times 10^{2} \\
& \phi=4.5 \\
& \phi^{2}=20.2 \\
& h=\frac{(20.2)(12.5)}{20.2(12.5+1)+5 \times 5.13 \times 10^{3}} \\
& =\frac{2.53 \times 10^{2}}{2.73 \times 10^{2}+256 \times 10^{2}} \\
& =\frac{2.53}{2.59 \times 10^{2}} \\
& =.977 x 10^{-2} \\
& \because 0.97770
\end{aligned}
$$

ii) For $n=\frac{\phi^{2} R 2}{m^{2} u^{2} R_{E}}$

$$
\begin{aligned}
N & =\frac{(20.2)(12.5)}{10^{-4}\left(2 \pi \times 10^{3}\right)^{2} 5} \\
& =\frac{202^{2} \times 125}{4 \pi^{2} \times 5} \times 10^{-2} \\
& =1.28 \times 10^{-2} \\
& =1.2877
\end{aligned}
$$

FINDING RATIO

$$
\frac{1.28 \times 10^{\circ}}{0.977 \times 10^{2}}=1.31
$$

(10-4) $R_{E}=3.2 \Omega ; L_{E}=2 \times 10^{-4} \mathrm{H}$

$$
B=1 \text { We } \mathrm{M}^{2} ; \quad m=1.5 \times 10^{-2} \mathrm{~kg}
$$

$$
R_{m}=1 \frac{K 8}{S E C} ; R_{r}=1 \frac{K E}{S E C}
$$

$$
s=1.5 \times 10^{3} \text { NEWTONS }
$$

$$
d=3 \times 10^{-2} \mathrm{~m} ; N=80
$$

$\ell=(2 \pi r) N=\pi d N$

$$
\begin{aligned}
& =\pi\left(3 \times 10^{-2}\right) 80 \\
& =2.4 \pi \text { METERS }
\end{aligned}
$$

a) ASSUMING $X_{r}=0 ; \quad f=200 \mathrm{~Hz} \Rightarrow \omega=2 \pi f=1260 \frac{\mathrm{RAP}}{\mathrm{SE}}$ b)FIND ZE (ELEGTRICAL IMPERANCE)

$$
\begin{aligned}
Z_{E} & =R_{E}+j \omega L_{E} \\
& =3.2+j(2 \pi \cdot 200) \cdot\left(2 \times 10^{-4}\right) \\
& =[3.2+j(0.252)] \Omega
\end{aligned}
$$

ii) FIND Z_{M} (MOTIONAL IMOEDANCE)

$$
z_{M}=R_{M}+{ }_{d^{2}} x_{M}
$$

$$
R_{M}=\frac{\phi_{z^{2}}^{2}}{z_{m}^{2}}\left(R_{r}+R_{m}\right)-\frac{s}{t_{m}^{2}}\left(X_{r}+\omega m-\frac{s}{\omega}\right)
$$

$$
\frac{\phi}{z_{m}}=(B l) /\left(z_{r}+z_{c}\right)
$$

$$
\begin{aligned}
& =(B l) /\left(z_{r}+z_{c}\right) \\
& =(B l) /\left[\left(R_{r}+R_{m}\right)+j\left(x_{r}+\omega m-\frac{s}{\omega}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =(B 1) / L\left(R_{R}+m\right) /\left[(1+1)+j\left(0+2 \pi \times 200 \times 015-\frac{1}{25}\right.\right. \\
& =(1 \times 2.4 \pi)
\end{aligned}
$$

$$
\begin{aligned}
& =(1 \times 2.4 \pi) / L(1+1)+d\left(0.4 \pi /\left[2+j\left(1.5 \times 10^{-3} \times 1.26 \times 10^{3}=\frac{15}{4 \pi}\right)\right.\right. \\
& =2.4 \pi /[19)
\end{aligned}
$$

$$
=2.4 \pi /[2+j(1.89)-1.19)
$$

$$
=7.54 /(2+j 0.70)
$$

$$
\Rightarrow \quad \frac{\phi^{2}}{z_{m}^{2}}=(7.54)^{2} /\left(2^{2}+(0.70)\right)
$$

$$
=56.8 /(4+0.49)
$$

$$
=56.8 / 4.49
$$

$$
=12.6
$$

$$
\begin{aligned}
& R_{m}=\frac{\phi^{2}}{z_{m}^{2}}\left(R_{r}+R_{m}\right) \\
& =12.65(1+1) \\
& =25.3 \Omega .36 \\
& x_{M}=-\frac{\Phi^{2}}{z_{m}^{2}}\left(x_{r}+\omega m-\frac{s}{\omega}\right) \\
& =-1265\left(0+2 \pi \cdot 200 \times 0.015-\frac{1500}{2 \pi \cdot 200}\right) \\
& =-1.2 .65(0.70) \\
& =-8.86-3.18
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-[253-j \text {. } 8.86] \Omega}{Z_{I}} \text { (TOTAL ELECTRICAL INPUT IMPEDANcE) } \\
& \text { iii) FINO } \\
& z_{I}=z_{M}+z_{E} \\
& =[25.3-d 886]+[3.2+j(0.252)] \\
& =[28.5-j 8.61] \Omega \\
& =3.56-2.939
\end{aligned}
$$

b) FIND ERMS $E^{\text {R }}=\sqrt{2} E e^{j \omega t}$ GIVES PEAK DISPLACEMENT $d=\sqrt{2} d R M M$.
e WILL SET UP cuRRENT IN TVE GOME:

$$
i=e / Z_{T}
$$

WHICH PRODUCES, A STEADY STATE VEMGEYGYE

THE DHPUCEMENT AMPLITUDE IS THUS

- udems $\left|\frac{Z_{m}}{p}\right|$

$$
\left.=\frac{400 \pi \times 10^{-3}}{4.54} \operatorname{li}^{2}+0.70^{2}\right]^{1 / 2}\left[28.5^{2}+8.61^{2}\right]^{1 / 4}
$$

$$
=\frac{4 \pi}{7.54} \times 10^{-1}[460.49] / 2\left[8.13 \times 10^{2} \div 0.74 \times 10^{7}\right.
$$

$$
=0.167(4.49)^{1 / 2}(8.57)^{1 / 2} 10
$$

$$
=1.67 \times 2.1242 .96
$$

$$
=10.5 \quad \mathrm{VOL} T
$$

$$
\begin{aligned}
& d=\sqrt{2} d_{\text {PMS }}=\frac{\phi}{\omega z_{m}^{2}} \sqrt{2}, E_{\text {RMS }} \\
& d_{R M S}=\frac{\phi_{1}}{U Z_{m}} E_{E M S}
\end{aligned}
$$

$$
\begin{aligned}
& V=B E i / E_{m} \leftrightarrow \\
& =\frac{\phi}{z} i
\end{aligned}
$$

$$
\begin{aligned}
& x=\int_{0}^{t} V d t, \quad t_{0}=0
\end{aligned}
$$

d) 21

$$
\begin{aligned}
R_{M} & =\frac{\phi}{R_{r}+R_{M}} \\
& =\frac{R_{B}+R_{M}}{(24 M 1)^{2}} \\
& =\frac{(2}{2}
\end{aligned}
$$

$$
=28.5 \Omega
$$

$$
\begin{aligned}
& i i) C M=\frac{28.5 \Omega}{\phi_{r}^{2}} \frac{m}{m}
\end{aligned}
$$

$$
\dot{\operatorname{is}} \quad \angle m=\phi^{2} \dot{s}
$$

$$
\begin{aligned}
& \begin{array}{l}
28.5 \Omega \\
\frac{x_{1} / m+m}{2}+10^{2}
\end{array} \\
& \begin{aligned}
C_{M} & =\frac{x_{1} / 4+m}{\phi^{2}} \\
& =\frac{0+10^{03}}{.57 .0 \times 10^{72}}
\end{aligned} \\
& =2.64 \times 10^{-5} \\
& =(26.4) \beta \\
& =57 / 1.5 \times 10^{2} \\
& =0.379 \text { HEMRIE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } V=\frac{b^{2} R_{R} E_{R H}^{2}}{Z_{m}^{2} Z_{x}^{2}} \\
& \text { Ev } 28.5 \cdot 5^{2}+8.61^{2} \\
& \begin{aligned}
& =887{ }^{2}{ }^{2} \\
\Rightarrow W & =\left(\frac{\phi_{n}^{2}}{E_{n}}\right)^{2} \frac{E_{1}^{2}}{R_{1}}
\end{aligned} \\
& =(12.65)^{\frac{2}{T} 1(10.5)^{2}} \frac{8.87 \times 10^{2}}{(205)^{2}} \\
& =\frac{1.265(1.05)^{2}}{0.67} \\
& =1.57 \text { watts }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10.8) } \quad 4=0.2 \mathrm{~m} \\
& m=4 \times 10^{-2} \mathrm{~kg} \\
& R_{g}=4 \Omega \\
& L_{E}=10^{-4} \mathrm{H} \\
& \phi=10 \frac{W E R E R}{m} \\
& S=2 \times 10^{3} \text { NEWTORS } \\
& R_{m}=2 \frac{\mathrm{~kg}}{5 \mathrm{EC}} \\
& \text { a) FIND W } W^{2} R^{2} E_{R M S}=10 V A N O \quad f=200 \mathrm{HZ} \\
& W=\frac{\phi^{2} R_{r} E_{\operatorname{RAS}}^{2}}{Z_{m}^{2} Z_{X^{2}}^{2}} \\
& z_{m}=z_{n}+z_{c} \\
& z_{n}=R_{n}+j x_{r} \\
& R_{r}=\rho_{0} c \pi a^{2} R_{1}(2 k a) \\
& =(415) \pi(0.2)^{2} R_{1}\left(2 \times \frac{2 \pi \times 200}{343} \cdot 0.2\right) \\
& =522 R_{1}\left(\frac{50 \pi}{343}\right) \quad 160 \pi \\
& =522 R,(0.733) \\
& =522(0.0651) \\
& =34.0 \frac{k 5}{56} \quad 12, \% \\
& x_{r}=p_{0}<\pi a^{2} x_{1}(2 k a) \\
& =522 \times,(0,73) \\
& =522(0.298) \\
& =156 \frac{1 \mathrm{ce}}{5 \mathrm{c}} \\
& z_{c}=R_{m}+j\left[\omega m-\frac{s}{\omega}\right] \\
& =2+j\left[2 \pi \cdot 200.4 \times 10^{-2}-\frac{2000}{2 \cdot \pi \cdot 200}\right] \\
& =2+j[50.2-1.6] \\
& =2+j[48.6] \\
& \Rightarrow Z_{m}=\left(R_{r}+R_{m}\right)+j\left(x_{r}+\omega m-\frac{s}{\omega}\right) \\
& =[((340+2)+i(156+48.6)] \quad 14.7+76.71 \\
& =34.2+{ }^{2} 204.6 \\
& z_{m}^{2}=(34.2)^{2}+(205)^{2} \\
& =11.7 \times 10^{2}+4.22 \times 10^{4} \\
& =4.34 \times 10^{4} \quad 6106 \\
& \text { FROM PC } 506
\end{aligned}
$$

$$
\begin{aligned}
& Z_{D}=Z_{E}+Z_{M} \\
& =\left(R_{E}+R_{M_{2}}\right)+j\left(\omega L_{E}+K_{M}\right) \\
& R_{m}=\frac{\phi^{2}}{R_{m}^{2}}\left(R_{r}+R_{m}\right) \\
& =\frac{10^{2}}{400 \times 10^{4}}(340+2) \\
& =\left(2.46 \times 10^{-3}\right)(36.0) \\
& =88.5 \times 10^{-3} \Omega \\
& X_{M}=\frac{\dot{d}^{2}}{z_{m}^{2}}\left(x_{r}+\omega m-\frac{s}{\omega}\right) \\
& =-\left(2.46 \times 10^{-3}\right)\left(2.04 \times 10^{2}\right) \\
& =0.502 \Omega \\
& \Rightarrow z_{5}=\left(4+88.5 \times 10^{-3}\right)+j\left(2 \pi 20010^{-4}-0.502\right) \\
& =409+j(0.126-0.502) \\
& =4.09-j(0.376) \\
& z_{z^{2}}^{2}=(4.09)^{2}+(0.376)^{2} \\
& =16.75+0.141 \\
& =16.9 \Omega \quad 19.1
\end{aligned}
$$

$$
\text { THUS: } \begin{aligned}
& W= \frac{\phi^{2} R E_{r}^{2}}{z_{m}^{2} z_{2}^{2}} \\
&=\frac{(100)(34.0)(100)}{(4.34 \times 104)(16.9)} \\
&=0.463 \text { WhTS } \\
& 111
\end{aligned}
$$

 FOR A POINT ON $A \times 15 i$
$P=-p C U_{0} e^{i \omega t}\left[e^{-i k \sqrt{r^{2}+a^{2}}} \cdot e^{i k r}\right]$
THE PRESSURE AMPLITUDE ON AXIS $P=p c U_{0} \mid e^{-i k \sqrt{r^{2}+a^{2}}}-e^{i k r \mid}$

$=\rho \subset U_{0} \|\left[2-e^{-i k \sqrt{r^{2}+a^{2}}} e^{-i k r}-e^{\left.i k r e^{i k \sqrt{r^{2}+a^{2}}}\right]^{1 / 2}}\right.$
$=p \in \operatorname{Uol}^{\prime}\left[2-e^{i k\left[r+\sqrt{r^{2}+a^{2}}\right]} \cdot e^{-i k\left[r+\sqrt{r^{2}+a^{2}}\right] / 2} \mid\right.$
$=p c v_{0} \sqrt{2}^{r}\left[1-\cos ^{2}\left[k\left(r+\sqrt{r^{2}+a^{2}}\right)\right]\right]$
$=\sqrt{2} p c U_{0} \operatorname{Ain} k\left(r+\sqrt{r^{2}+a^{2}}\right)$
U. $\mathrm{VELOCITY} \mathrm{AMPEITVOE} \mathrm{OF} \mathrm{"PISTON"}^{2}$

$$
\begin{aligned}
V & =\frac{z_{m}}{i} \\
& =z_{E}+\Phi y_{m}
\end{aligned}
$$

$=\sqrt{2} 10 \left\lvert\,\left(4+\frac{2 \pi 4200 \times 10^{m}+4}{4.34 \times 10^{4} \times(34.2 .1204 .4}\right)\right.$
$=14.1\left(4+\frac{4.34 \times 104}{4}\right)+1(4 \pi \times 10-4.31$
$=14.1 \mid(4+0.0771)^{2}+\left(12.6510^{-2}-0.473\right) 1^{1}$
$=14.1 \mid 4.08+j 0.599^{1-1}$
$=14.1\left[4.08^{2}+0.599^{2}\right]^{-1 / 2}$
$=14.1[16.740 .36]^{-1 / 2}$
$=14.1[17.1]^{-1 / 2}$
$=\frac{14.1}{4.1}$

- 32

$$
U_{0}=\frac{\bar{d}}{z_{m}} \cdot \frac{E_{6}}{z_{i}}=\frac{10}{78.1} \cdot \frac{10}{4.37}
$$

$$
\begin{aligned}
& \Rightarrow P=\sqrt{2} p \in U_{0} d n \frac{\omega}{2}(r+\sqrt{12+a}) \\
& =\sqrt{2}\left(4.15 \times 10^{2}\right)(3.43) \sin \frac{2 \pi .200}{3.43}\left(10+\sqrt{10^{2}+0.2^{2}}\right) \\
& =20.1 \sin \left[3.66(10+\sqrt{100.64})^{1 / 2}\right] \\
& =20.1 \operatorname{An}[3.66 \sqrt{20}] \\
& =20.1 \operatorname{An}[3.66 \times 4.47] \\
& =20.1 \mathrm{Ain}[16.35] \\
& =20.1 \sin [16.35-4 \pi] \\
& =20.1 \mathrm{Am}[16.35-12.6] \\
& =20.1 \operatorname{AN}\left[3.75 \mathrm{RAN} \frac{180^{\circ}}{\pi R A D}\right] \\
& =20.1 \operatorname{Ln}\left[215^{\circ}\right] \\
& =-20.111035^{\circ} \\
& =-20.1(0.575) \\
& P_{A}=11.6 \frac{\mathrm{NT}}{\mathrm{MH}} \\
& P_{\text {and }}=\left(\frac{p<k_{0} \pi a^{2} 0}{2 \pi n}\right) \text { wow }
\end{aligned}
$$

$$
.86 \frac{m}{m^{2}}
$$

$\therefore P_{0}$ ma dy $=$ (andy)
10-11)

FOR A CONSTANT VELOCITY AMPLITUDE, IT MAY CE ASSUMED THE SPEAKER IS FED BY CURRENT $i=I e^{j \omega t}, A N D T H E$ CORRESPONONG OUTPUT POWER IS:

$$
W=\frac{1}{2} R_{N} V_{0}^{2}
$$

WHERE Rr$R_{0} \operatorname{coma}^{2} R_{1}(2 k a)$

THE EXPANSION OF $x_{1}(x): x^{2}$ (P G179, 5G 7.72)

$$
b^{2}+y^{2}
$$

NORMALIZING THE OUTPUT POWER WITH RESPECT TO THE SQUARE OF THE VELOCITY AMPLITUDE:

$$
\frac{W^{2}}{V^{2}}=\frac{1}{2} p_{0} C \pi\left[200+\frac{10^{4}}{\sqrt{f}}\right] \sum_{n=1}^{\infty} \frac{\left[\frac{4 \pi}{6}\left(200 \&+10^{4} f^{3 / 2}\right)^{2 n}\right.}{4(n+1) \prod_{i=1}^{4} 4(i+1)^{2}}
$$

THIS CALLS FORA COMPUTER PROGRAM

$$
\begin{aligned}
& \text { Now } R_{1}(2 k a)=R_{1}\left[2 k\left(200 ; \frac{10^{4}}{\sqrt{4}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=1}^{\infty} \frac{\left[\frac{4 \pi}{c}\left(200 f+10^{4 f} f^{32}\right)\right]^{2 n}}{d_{n}} \\
& W=\frac{1}{2} R_{r} V_{0}^{2} \\
& =\frac{1}{2} p_{0} \operatorname{c\pi }\left[200+\frac{10^{4}}{\sqrt{4}}\right] \sum_{n=1}^{02} \frac{\frac{4 \pi}{c}\left(200^{f}+10^{45^{3 / 2}}\right)^{2 n}}{4(n+1)_{i=1}^{n+1} 4(i+1)^{2}} \\
& \text { 别: } W=\frac{1}{2} R_{r} V_{0}{ }^{2} \\
& \text { (}(101 m)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=1}^{\infty} \frac{x^{2 n}}{d_{n}} ; d_{n}=20^{2} \cdot 2(n+1)^{n=1} \sum_{i=1}^{n} 4(i+1)^{2} ; n>1
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow W=\frac{w_{0}^{2}}{2} \rho_{0}<\pi a^{2} R_{1}(2 k a) \\
& =\frac{v_{2}^{2}}{2 p_{0}}\left[200 * \frac{10^{4}}{\sqrt{\frac{1}{5}}}\right] R_{1}\left[2 k\left(200 * \frac{10^{4}}{\sqrt{8}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& a=\left(2+\frac{100}{\sqrt{74}}\right) \mathrm{cm} \\
& =\left(200+\frac{10^{4}}{\sqrt{T}}\right) \text { METERS } \quad 10 \mathrm{~Hz}^{2} \mathrm{f} \leq 10^{4 \mathrm{HZ}} \\
& \text { LET } V=V_{0} e^{j \omega t} \quad V_{0}=\text { COMPLEX CONSTANT } \\
& \begin{array}{l}
10^{2}=f \leq 10^{4} \mathrm{HZ} \\
1 E X \text { CONSTANT }
\end{array}
\end{aligned}
$$

```
    0.158E 03
        ."
    0.199E 03
    0.251F 03
    0.316E 03
    0.398E 03
    0.501E 03
    O.630E 03
    0.794E 03
    0.999E 03
    0.125E 04
    0.158E 04
    0.199E 04
    0.251E 04
    0.316E 04
    0.398E 04
    0.501E 04 -
    0.630E 04
    0.794E 04
    0.999E 04
    S 32 STOP 0000
```

EXECUTION TIME 000

SEASONS GREETINGS IOCS

CORE REQUIREMENTS COMMON $0 \quad V A$

MERRY CHRISTMAS
// LOAD

F			
$0.100 E$	03		
$0.125 E 03$	0		

$$
\begin{aligned}
& \text { 10.13)MODELNO THE SYSTEM AS AN ACOUSTRC DOUEGET } \\
& \text { GIVES THE REVATIONGHIR: } \\
& \frac{P_{0}}{P_{3}}=K^{2} e^{2} \quad(\rho \& \& 6 \% \\
& \Rightarrow P_{D}=\frac{K^{2} \ell^{2}}{3} P_{s} \\
& =\frac{\omega^{2} a^{2}}{3 c^{2}} P \\
& \ell=0.4 \mathrm{~m}: f=100 \mathrm{ma} ; \mathrm{D}_{\mathrm{g}}=0.05 \mathrm{wATTS} \\
& \Rightarrow P_{0}=\frac{1}{3}\left(\frac{2 \pi A}{6}\right)^{2} P_{s} \\
& =\frac{1}{3}\left(\frac{2 \pi 0.4 \times 10^{2}}{3.43 \times 10^{2}}\right)^{2}(0.05) \\
& =\frac{\left(7.33 \times 10^{-1}\right)^{2}}{3}\left(5 \times 10^{-2}\right) \\
& =0.00893 \text { WAPTS }
\end{aligned}
$$

$10-16)$
*34 CUWIRE HAS RESISTANCE OF $\frac{26 G \Omega}{1000 \% t}$

$$
\begin{aligned}
S_{c} & =\frac{P_{0} c^{2}\left(\pi a^{2}\right)}{V} \\
& =(10)\left(4.15 \times 10^{2}\right)\left(3.43 \times 10^{2}\right) \pi^{2}\left(1.5 \times 10^{-1}\right)^{4} \\
& =4.15 \times 3.43 \times \pi^{2} \times 2.25^{2} \times 10 \\
& =7130 \frac{N E W C O H 5}{m}
\end{aligned}
$$

$$
S_{E F F}=S+S_{C}
$$

$$
-8.13 \times 10^{3} \text { NEWTON/M }
$$

$$
\omega_{0}=\sqrt{5 / M}
$$

$$
\begin{aligned}
& \left.=\sqrt{5 / M} \times 10^{3} / 10^{122}\right)^{1 / 2} \\
& =\left(8.13{ }^{13}\right.
\end{aligned}
$$

$$
=\sqrt{81.3 \times 10^{4}}
$$

$$
=902 \frac{R E D}{5 E 2}
$$

$$
m_{0}=101+\frac{5}{0} p_{0}^{3}(04)(15)^{3}+01+009
$$

$$
\begin{aligned}
& \left.\Rightarrow R_{E}=\frac{(2.26 \Omega}{t t}\right)\left(\frac{3.28 \mathrm{f} 5}{m}\right)(14.15 \mathrm{~m}) \\
& \because\left(105 \Omega\left(\pi a^{2}\right)^{2}\right. \\
& \text { a) } \\
& S_{c}=
\end{aligned}
$$

$$
\begin{aligned}
& m=10^{-2} \mathrm{~kg} \\
& S=10^{3} \frac{\mathrm{HEMT}}{\mathrm{~m}} \\
& R_{m}=1.5 \frac{k g}{5 E} \\
& a=0.15 \mathrm{~m} \\
& \begin{aligned}
\left.r_{v C}=1.5 \times 10^{-2} \mathrm{~m}\right) \Rightarrow l=2 \pi N r_{v c} & =2 \pi\left(1.5 \times 10^{2}\right)\left(1.5 \times 10^{-2}\right) \\
& =14.15 \mathrm{~m}
\end{aligned} \\
& N=150 \\
& B=0.4 \\
& \frac{\text { weeres }}{m^{2}} \\
& L_{E}=4 \times 10^{-4} \mathrm{H} \\
& V=.2 \times 0.5 \times 1=0.1 \mathrm{~m}^{3}
\end{aligned}
$$

b) $E_{\text {RMis }} 10$, FIM W
i) AT RESONAMCE ($\omega=\omega_{0}$)

$$
\begin{aligned}
& =2.20 \frac{5 E}{2}\left(\frac{249}{6}\right) \\
X_{r} & =p_{0} \cdot \pi a^{2} x_{1}\left(\frac{1}{6}\right) \\
& =29.3 x_{1}(0.79) \\
& =29.3(0.321) \\
& =9.42 \frac{\mathrm{~kg}}{5 E}
\end{aligned}
$$

$$
Z_{m}=Z_{n}+Z_{c}
$$

$$
\begin{aligned}
& =Z_{r}+Z_{c} \\
& =\left(R_{r}+R_{m}\right)+j\left(\omega m-\frac{S E F}{W}+X_{r}\right) \\
& (0+9.42
\end{aligned}
$$

$$
\begin{aligned}
& =\left(R_{r}+K_{m}\right. \\
& =(2.20+1.5) j(0+9.42
\end{aligned}
$$

$$
=3.7+j 9.42
$$

$$
z_{m}^{2}=3.7^{2}+9.42^{2}
$$

$$
=13.7+88.7
$$

$$
=1.02 \times 10^{2}
$$

$$
\begin{aligned}
z_{I} & =z_{E}+z_{M} \\
& =z_{E}+\phi / z
\end{aligned}
$$

$$
\begin{aligned}
& =Z_{E}+Z_{M} / Z_{m} \frac{\phi^{2} Z_{m}^{W}}{=Z_{E}} \\
& =\left(R_{E}+j \omega L_{E}\right)+\frac{Z_{m}^{2}}{10}\left(4 \times 10^{m 4}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& =z_{E}+z_{m} \frac{\phi^{2} z_{m}}{z_{m}} \\
& =\left(R_{E}+j \omega L_{E}\right)+\frac{36.7}{102}(3.7-j 9.42) \\
& =\left(105+j(902)\left(4 \times 10^{-14}\right)+j \frac{36.7}{10.4}\right. \\
& =\left(105+\frac{36.7}{102} \times 3.7\right)+j\left(9.02 \times 4 \times 10^{-2}-102\right. \\
& =(105+1.33)+j\left(36.1 \times 10^{.2}=3.39\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(105+102 \times 3.1+j\left(36.1 \times 10^{-2}-3.39\right)\right. \\
& =(105+1.33)+j .03
\end{aligned}
$$

$$
=106 j 3.03
$$

$$
\begin{aligned}
& W=\frac{\Phi^{2} R r_{1} E_{n-}}{Z_{m}^{2} Z_{x}^{2}} \\
& \phi^{\prime}=B \ell \\
& =(0.4)(14.15) \\
& -(6.06) \frac{\text { NEBERS }}{\mathrm{m}} \\
& \left.\phi^{2}=(36.7) \frac{\omega 5 B E R}{m}\right)^{2} \\
& R_{r}=p_{\theta} c \pi a^{2} R_{1}\left(\frac{2 \omega a}{c}\right) \\
& =\left(4.15 \times 10^{2}\right) \pi\left(1.5 \times 10^{-1}\right)^{2} R_{1}\left(\frac{2 \times 9.02 \times 10^{2} \times 1.5 \times 1}{3.43 \times 10^{2}}\right. \\
& =4.15 * \pi \times 1.5^{2} R_{1}\left(\frac{2 \times 9.02 \times 1.5}{3.43} \times 10^{-1}\right) \\
& =29.3 R_{1}(0.79) \\
& \text { (} \left.\rho_{p^{0}} 5^{06}\right) \\
& =29.3(0.075) \\
& \left(P_{0} 506\right)
\end{aligned}
$$

$$
\begin{aligned}
& =8.1 .12 \times 10^{4} \\
& \Rightarrow W=\frac{d^{2} R r E R M}{m^{2} m^{2}} \\
& =\frac{(36.7)(2.20) 10^{2}}{1.02 \times 10^{2}} \\
& =\frac{(5.67)(2.20)}{(1.02)(1.12)} \times 10^{-4} \\
& =7.06 \times 10^{-4} \text { WATTS } \\
& \text { + } \ldots
\end{aligned}
$$

$$
\begin{aligned}
& x_{n}=1,0 \\
& x_{5}=6.60 \\
& x_{m}=6.61 \\
& x_{5}=370 \\
& x_{0}=0.59
\end{aligned}
$$

ie)

$$
\begin{aligned}
& f=200 n z \Rightarrow W=2 \pi f=1.255 \times 10^{3} \\
& W=\frac{\phi^{2} R_{r} E_{R M S}}{z_{m}^{2} z_{x}^{2}} \\
& R_{r}=\mu_{0} c \pi a^{2} R_{i}\left(\frac{2 \omega a}{6}\right) \\
& =29.3 R_{1}\left(\frac{2 a}{c} \omega\right) \\
& =29.3 R_{1}\left(\frac{2 \times 0.15 \times 1.255 \times 10^{3}}{3.43 \times 10^{2}}\right) \\
& =29.3 R_{1}(1.10) \\
& =29.3(0.145) \\
& \text { P-506 } \\
& =4.25 \frac{\mathrm{~kg}}{\mathrm{sEc}} \\
& X_{r}=p_{0} c \pi a^{2} x_{1}\left(\frac{2 \omega 9}{c}\right) \\
& =29.3 x_{1}(1.10) \\
& =29.3(0.430) \\
& P_{5} 506 \\
& =12.6^{\frac{\mathrm{kg}}{\mathrm{sE}}} \\
& z_{m}=z_{r}+z_{c} \\
& =\left(R_{r}+R_{m}\right) r_{j}\left(\omega m-\frac{\text { SEEF }}{\text { es }}+X_{r}\right) \\
& =(4.25+1.50)+j\left(1.255 \times 10^{3 \times 10^{-2}}-\frac{8.13 \times 10^{3}}{1.255 \times 10^{3}+12.6}\right. \\
& =5.75 \cdot j(12.55-6.57+12.6) \\
& =5.75+18.6 \\
& z_{m}^{2}=5.75^{2}+18.6^{2} \\
& =30.3+346 \\
& =376 \\
& z_{5} \cdot z_{E}+z_{m} \\
& =z_{n}+\phi^{2} / z_{m} \\
& =Z_{E}+\frac{\phi_{2}^{2}}{z_{m}} Z_{m} \\
& \begin{array}{l}
=Z_{E} z_{m}^{2} Z_{m} \frac{d^{2}}{Z_{m}^{2}}\left(R_{m}-j\left(\omega m \cdot \frac{S E F}{\omega}\right)\right)
\end{array} \\
& =105+j\left(1.255 \times 10^{3}\right)\left(4 \times 10^{0.4}\right)+\frac{367}{376}(5.75-j .18 .6) \\
& =105+\frac{36.7}{376} 5.75+j\left[0.502-\frac{36.7}{376} 18.6\right] \\
& =105+0.558+j[0.502 \cdot 1.81] \\
& =1066 j 1.31 \\
& z_{I}^{2}=1.12 \times 10^{4}
\end{aligned}
$$

$$
\begin{aligned}
& W=\frac{\phi^{2} R E_{2 m s}^{2}}{2_{m}^{2}} \\
&=(36.7)(4.25) 10^{2} \\
&=\frac{\left(3.76 \times 10^{3}\right)\left(1.12 \times 10^{4}\right)}{(3.76)(1.12) \times 10^{2}} \\
&=\left(3.71 \times 10^{-4}\right. \text { WATTS } \\
& 0.6 \text { watm }
\end{aligned}
$$

iï)

$$
\begin{aligned}
& W=\frac{\phi_{0} R_{r} E_{\operatorname{Rn}}{ }^{2}}{E_{n}^{2} z_{2}^{2}} \\
& R_{r}=p_{0} 6 \pi a^{2} R_{1}\left(\frac{2 \omega 9}{2}\right) \\
& =29.5 P_{1}\left(\frac{2 \times 6.26 \times 10^{2} \times 0.15}{3.45 \times 10^{9}}\right) \\
& =29.3 R_{1}(0.548) \\
& =(29.3)\left(0.321 \times 10^{-1}\right)=(0.940) \\
& x_{r=} p_{0} \pi a^{2} x_{1}\left(\frac{2 \omega a}{c}\right) \\
& -29.3 x_{1}(0.548) \\
& =29.3(0.208) \\
& =6.9 \\
& z_{m}=z_{n}+z_{c} \\
& =\left(R_{r}+R_{m}\right) \cdot j\left(\omega m-\frac{5 E F E}{C}+X_{n}\right) \\
& =(0.940)+1.50)+j\left(6.26 \times 10^{3} \times 10^{-2} \cdot \frac{8.13 \times 10^{3}}{6.26 \times 10^{3}}+6.9\right) \\
& =2.44+j[62.8-1.3+6.9] \\
& =2.44+d 68.1 \\
& z_{m}^{2}=2.44^{2}+68.4^{2} \\
& =5.7+46.5 \times 10^{2} \\
& =46.9 \times 10^{2} \quad 5850 \\
& z_{E}=z_{E}+z_{\phi_{n}} \\
& =Z_{E}+\frac{\phi^{2}}{Z_{m}^{2}} Z_{m}^{*} \\
& =\left(105+j 6.28 \times 10^{3} \times 4 \times 10^{104}\right)+\frac{36.7}{4.6910^{3}}[2.44168 .4 \\
& \left.=105+\frac{36 \cdot 7}{4.69 \times 10^{*}} \times 2.44+[2.5] \cdot \frac{6.84 \times 3.6710}{4.69 \times 103}\right] \\
& =105+j[2.51-0.62] \\
& =105)+d 1.89 \\
& z_{1}{ }^{2}=1.10 \times 10^{4} \\
& W=\frac{\phi^{2} E_{r} \text { Enas }}{Z_{m}} \\
& =\frac{(36.7)(0.910) 10^{2}}{\left(46.9 \times 10^{2}\right)\left(1.10 \times 10^{4}\right)} \\
& =\frac{(3.67)(9.40)}{(4.69(1.10)} \times 10^{-5} \\
& =\left(6.70 \times 10^{-5}\right. \text { WATTS }
\end{aligned}
$$

$10.19) f=250 \mathrm{~Hz} \Rightarrow \omega=277^{5}=50071.57 \times 10^{3}$

$$
\begin{aligned}
& f=250 H 2 \Rightarrow \omega=2 \pi 5=500 \pi=1.50 .8 \times 10^{2}=2.83 \times 10^{-3} \mathrm{~m}^{2} \\
& S_{0}=\pi \times\left(3 \times 10^{-2}=9 \pi \times 1\right)^{2}=2 .
\end{aligned}
$$

$$
\begin{aligned}
m & =5 \\
f_{c} & =\frac{m c}{4 \pi} \\
& =(5)\left(3.43 \times 10^{3}\right) \\
& =136.5 \mathrm{~Hz}
\end{aligned}
$$

a)
b)

$$
\begin{aligned}
& W=\frac{1}{2} R r V^{2} \\
& U_{1}=V_{0} \Rightarrow V^{2}=\frac{U}{S} \Rightarrow V^{2}=\left(\frac{U}{S}\right)^{2}
\end{aligned}
$$

son At THE pHROAT $(x-0)$

$$
\begin{aligned}
& W=\frac{b_{0}}{2}\left(S_{0}^{2} R_{b}\right)\left(\frac{U_{0}^{2}}{S_{0}^{2}}\right) \\
&=\frac{1}{2} R_{0} U_{0}^{2} \\
& \Rightarrow U_{0}=\sqrt{\frac{2 W}{R_{0}}} \quad \frac{m^{2}}{R_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& V_{0}=\sqrt{R_{0}} R_{0} \sqrt{m^{2}} \\
& R_{0}=\frac{S_{0}}{p_{0}} \sqrt{1-k^{2}}
\end{aligned}
$$

$$
=\frac{50}{50} \sqrt{1-\left(\frac{m c}{20}\right)^{2}}
$$

$$
\begin{aligned}
& =\sum_{0}^{c} \sqrt{1-\left(\frac{m c}{20}\right)^{2}} \\
& =\frac{4.5 \times 10^{2}}{2.53 \times 10^{5}}\left[1-\left\{\frac{(5)\left(3.43 \times 10^{2}\right)}{\left.2\left(1.57 \times 10^{3}\right)^{2}\right]^{1 / 2}}\right.\right. \\
& =1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4.83 \times 10^{-3}}{2.1}-\left[2\left(1.57 \times 10^{-1}\right]^{5} / 2\right. \\
& =1.465 \times 10^{5}\left[1-\left(5.45 \times 10^{-1}\right)^{2} / 2\right.
\end{aligned}
$$

$$
\begin{aligned}
& =1.465 \times 10[1 / 2.29]^{1 / 2} \\
& =1.465 \times 10^{5}[1-0.29
\end{aligned}
$$

$$
=1.465 \times 10^{5} \sqrt{0.703}
$$

$$
=1.465 \times 10.465)(0.839) \times 10^{5}
$$

$$
=1.23 \times 10^{5}
$$

$$
U_{0}=\sqrt{\frac{2 W}{1.23 \times 10}}
$$

$$
=\sqrt{1.225 \times 10^{-5}}
$$

$$
=\sqrt{16.25 \times 10^{-0}}
$$

$$
\begin{aligned}
& =\sqrt{16.25 \times 10-6} \\
& =4.06 \times 10^{-3} \frac{\mathrm{~m}^{3}}{5 \mathrm{Ec}}
\end{aligned}
$$

c) $V=\omega \varepsilon_{0}$

$$
\begin{aligned}
\Rightarrow V_{0} S_{O D}=U_{0} & =\omega \varepsilon_{0} S_{O O} \geqslant S_{O D}=D R I V E R A R E A \\
O R \quad \varepsilon_{0} & =\frac{U_{0}}{(400} \\
& =\left(1.57 \times 10^{3}\right)(\pi)\left(5 \times 10^{-3}\right) \\
& =\frac{406}{(1.57)(\pi)(25)} \times 10^{-2} \\
& =0.330 \times 10^{-3} \\
& =3.30 \times 10^{-4} \text { METERS }
\end{aligned}
$$

$$
\begin{aligned}
& S_{x}=S_{0} e^{m x} \\
& \pi\left[10^{-1}\right]^{2}=\pi\left[0.2 \times 10^{-1}\right]^{2} e^{m(0.20)}
\end{aligned}
$$

$$
e^{m(0.20)}=\frac{10^{-2}}{0.04 \times 10^{12}}=25
$$

$$
0.20 m=\ln 25
$$

$$
m=5 \ln 25
$$

$$
=5([0.219]
$$

$$
=1.095 / \mathrm{m}
$$

FREQUENCY OF PLANEWAVE:

$$
\begin{aligned}
& \text { RUENCY OF PLANEWAVE: } \\
& f=2 \times 10^{3} \Rightarrow \omega=2 \pi f=4 \pi \times 10^{3}=1.255 \times 10^{3} \mathrm{SEAE}
\end{aligned}
$$

PRESSURE:

$$
\begin{aligned}
& n=74 d b=20 \log \frac{P}{E}+74 d b \\
& \Rightarrow P=E \text { RELATIVE TO } 2 \times 10^{\circ 4} \text { MICROBARS/VOLT } \\
& \Delta R^{\prime} P=E \times 2 \times 10^{-4} \text { (M1cRoBARS) } \\
& \text { SO FOR DNE VOLT, THE INCIDENT PRESSURE } \\
& \text { AMPLTUDE is } 2 \text { al } 0^{-4} \text { microbars }
\end{aligned}
$$

$$
\begin{aligned}
& \xi e^{-a k} e^{j \omega t}\left[A e^{\dot{j} B x}+B e^{\dot{j} B x}\right] \\
& u=\frac{\delta E}{\delta t}=j \omega e^{-\alpha x} e^{j \omega t}\left[A e^{-j B x}+B e^{j, B x}\right] \\
& \frac{\delta u}{b}=\frac{S^{2} \hat{z}}{\delta t}=-\omega^{2} e^{-\alpha x}\left[A e^{-j B x}+B e^{j \beta x}\right] e^{j \omega t} \\
& \frac{b \beta}{b x}=-\rho^{2} \frac{b^{2}}{5} t^{2}=+\rho \omega^{2}\left[A e^{-(B+\alpha) x}+B e^{(j \beta-\alpha) x}\right] e^{j \omega t} \\
& p=p \omega^{2}\left[\frac{-A}{(\beta+\alpha)} e^{-(j \beta+\alpha) x}+\frac{B}{(\beta-\alpha)} e^{(j \beta-\alpha) x}\right] e^{j \mu t} \\
& \left\{\begin{array}{l}
p=\rho \omega^{2} e^{-\alpha x}\left[\frac{-A}{\left(j B^{+\alpha}\right.} e^{-j B x}+\frac{B}{(B-\alpha)} e^{j B x}\right] e^{j \omega t} \\
U=j \omega e^{-\alpha x}\left[A e^{-j B x}+B e^{j B x}\right] e^{j \omega t}
\end{array}\right.
\end{aligned}
$$

BOUNDRY CONDITION'S:
$\left.U\right|_{X=0}=0$ (RIGIO OIAPHRAM DOES NOT MOVE)

$$
\begin{aligned}
&\left.u\right|_{x=0}=0=j \omega[A+B] e^{j \omega t} \\
& \Rightarrow A=-B
\end{aligned}
$$

$$
\begin{aligned}
& P=p \omega^{2} e^{-\alpha x}\left[\frac{A}{(B+\alpha)} e^{-j B x} \frac{A}{(\beta-\alpha)} e^{j B x}\right] e^{j \omega t} \\
& =p \omega^{2}\left(B^{2}+\alpha^{2}\right) e^{-\alpha x}\left[A(j B-\alpha) e^{j \beta x}-A(j \beta+\alpha) e^{j B x}\right] e^{j \omega} \\
& =\frac{\rho \omega^{2} e^{-\alpha x}}{\left(\rho^{2}+\alpha^{2}\right)}\left[j A B e^{-j B x}-j A B e^{j B x}-A \alpha e^{-j B x}-A \alpha e^{j B x}\right] e^{j \omega 1} \\
& =\frac{\rho \omega^{2} e^{-\alpha x}}{\beta^{2}+\alpha^{2}}\left[2\left\{\frac{A B e^{j \beta x}-A B e^{-j B x}}{j^{2}}\right\}-2\left\{\frac{A \alpha e^{+j B x}+A \alpha e^{-j \beta x}}{2}\right\}\right] e^{j \beta} \\
& =\frac{2 \rho \omega^{2} e^{2 x}}{B^{2}+\alpha^{2}}[A B \sin B x-A \alpha \cos B x] e^{\sigma \omega t} \\
& =\frac{2 A \rho \omega^{2} e^{-\alpha k}}{B^{2}+\alpha^{2}}[\beta \sin B x-\alpha \cot \beta x] e^{\delta \operatorname{sit}} \\
& u=j \omega e^{-\alpha x}\left[A e^{-j B x}-A e^{j B x}\right] e^{j \omega t} \\
& =-j A \omega e^{-\alpha x}(j 2)\left[\frac{e^{j B x}-e^{-j B x}}{j^{2}}\right] e^{j \omega t} \\
& =2 A \omega e^{-\infty x} \sin B x e^{d \omega t}
\end{aligned}
$$

THE PRESSURE AMPLITURE AT $x=l$ 1S:

$$
\rho_{A}=\frac{2 A p \omega^{2} e^{-\alpha},}{\beta^{2}+\alpha^{2}}[\beta \sin \beta d-\alpha \cos \beta]
$$

AND WAS SHOWN TO BE : $2 \times 10^{W 4}$ MICROBARS/VOLF SOLVINE FOR A:

$$
\begin{aligned}
& A=\frac{\rho_{A}\left(B^{2}+\alpha^{2}\right)}{\beta^{2} \omega^{2} e^{-\alpha}}[B \sin B \alpha-\alpha \cos d]^{-1} \\
& B=\sqrt{k^{2}-\frac{m^{2}}{4}} \\
& =\sqrt{\left(\frac{u}{c}\right)^{2}\left(\frac{m}{2}\right)^{2}} \\
& =\left[\left(\frac{1.25 \times 10^{2}}{3.43 \times 10^{2}}\right)^{2}-\left(\frac{1.095}{2}\right)^{2}\right]^{\frac{1}{2}} \\
& =\sqrt{13.4-0.30} \\
& =\sqrt{13 \cdot 1} \\
& =3.621 m: \beta^{2}=13.1 \\
& a=\frac{m}{2} \\
& =\frac{1.095}{2} \\
& =0.547 / m: x^{2}=0.30 \\
& B R=(3.62)(0.2)=7.25 R A D \frac{180^{\circ}}{\pi R A D}=415^{\circ} \\
& \operatorname{An} B Q=\operatorname{An} 45^{\circ}=\sin 5^{\circ}==0.82 \\
& 0020.2=0024150=0.55^{\circ}=0.143
\end{aligned}
$$

$$
\begin{aligned}
e^{-\alpha 2} & =e^{-(0.547)(0.20)} \\
& =e^{-0.01094} \\
& =0.2(0.01094)-111 /(0.01094) \\
& =1.00006 \quad-01094 \\
& =0.989
\end{aligned}
$$

SUBSITUTHNG:

$$
\begin{aligned}
A & =\frac{\left(2 \times 10^{-1}\right)[13.1+0.3]}{24(1.21)\left[1.255^{2}\right] \times 10^{6}(0.989)}[3.62 \times(-0.82)-(0.547)(0.143)] \\
& =\frac{-13.4}{1.21)\left(1.2557(0.989) \times 10^{-10}(2.97-0.08)^{-1}\right.} \\
& =\frac{-7.12 \times 10^{-10}}{2.89} \\
& =-2.47 \times 10^{-10}
\end{aligned}
$$

THE PRESSORE AMPLITUDE AT THE THROAT:

$$
\begin{aligned}
& |\rho|_{x=0} \left\lvert\,=\frac{-2 A \rho \omega^{2} \alpha}{d^{2}+B^{2}}\right. \\
& =\frac{(-2)\left(-2.47 \times 10^{-10}\right)(1.21)(1.255)^{2} \times 10^{6}(0.547)}{13.1+0.30} \\
& =\frac{(2)(2.17)(1.21)(1.255)^{2}(0.547)}{1.34} \times 10^{-5} \\
& =3.84 \times 10^{-5} \frac{\text { MICROBARS }}{\text { VOLT }} \\
& n=20 \log _{10} 3.84 \times 10^{-5}+47 \mathrm{db} \\
& =-20 \log _{10} 2.61 \times 10^{4}+47 d b \\
& =-20[4.42] 447 \\
& =-41.4 d b \text { RELATVE TO 2×10 Mickorabs/Volt }
\end{aligned}
$$

Kinslon $\because \operatorname{Feg}_{2}$

10,22

$$
\begin{gathered}
f=2000 h_{0} t_{3} \\
w=2 \pi(2000)=1.25 \times 10^{4} \\
k_{0}=\frac{\omega}{c}=\frac{2 \pi)}{343}=36.6 \\
B Q_{k}=(36.6)(.1)=3.66 \geqslant 3
\end{gathered}
$$

$$
\begin{aligned}
S & =S_{0} e^{m x} \\
\pi(11)^{2} & =\pi(02)^{2} e^{m(2)} \\
e^{2 m} & =25 \\
m & =16.0 \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{k}=\frac{m}{2}=8.0^{2} \\
& \vec{p}=\sqrt{1^{2}-\left(\frac{m}{2}\right)^{2}}=\sqrt{(36.6)^{2} \cdots(8.2)}=35.7 \\
& m-k=\frac{m}{2}=8.02
\end{aligned}
$$

$\operatorname{Set} \xi_{A}=A e^{-x e^{i(\omega t+\beta x)}}$

Ther frem oq 10.36

$$
\begin{aligned}
& =-\rho c^{2}\left[m \xi+\frac{\partial \xi}{\partial v}\right] \\
& =-p C^{2} A e^{-\alpha x}[m-\alpha+\hat{\beta}] e^{\gamma(\omega+\alpha \beta)} \\
& =-\rho c^{2} \left\lvert\, A e^{\gamma \phi} e^{-\alpha^{x}}\left[(m-\alpha)^{2}+\beta^{2}\right]^{\frac{1}{2}} e^{\theta^{\phi}} e^{i(\omega t+\beta x)}\right. \\
& =-\rho c^{2} / \rho \mid e^{-\alpha x} \sqrt{(m-4)^{2}+\beta^{2}} e^{\left.(\mu+1) \beta x+\phi, b_{2}\right)} \\
& P_{\substack{0 \\
a x p h \\
x \rightarrow 2,2}}=\rho c^{2}|A| e^{-2 \alpha} \sqrt{(m-x)^{2}+\beta^{3}}
\end{aligned}
$$

10,22 cot at $x=0$

$$
\begin{aligned}
& 20 \log _{10} \mathrm{pc}^{2} A \left\lvert\, e^{2.4} \sqrt{(m-4)^{2}+\beta} \frac{(2)(95.7)}{(.2)(36.6)}=20 \log _{10} 9\right.,76=1 \\
& =20 \log _{10} \frac{(2)(35.7)}{e^{-1.6} \sqrt{(3.02)^{2}+(35.7)^{2}}}=20 \log ^{(10.8}=93.8 \mathrm{db}
\end{aligned}
$$

$$
\begin{aligned}
& =-p c^{2} \beta e^{-x^{x}} e^{\text {(} 1(\alpha-\beta x)}[m-x-j \beta]
\end{aligned}
$$

$$
\begin{aligned}
& S=\xi_{n}+\xi_{n}=e^{-\alpha x}\left[A e^{j(v / 1(x)}+B c^{\beta(\mu+\alpha \beta x)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =-p c^{2} \beta e^{-x^{x}} e^{\text {(} 1(\alpha-\beta x)}[m-x-j \beta]
\end{aligned}
$$

$$
\begin{aligned}
& \text { 11.2) } a=2 \times 10^{-2} \mathrm{~m} \\
& d=2 \times 10^{-5} \mathrm{~m} \\
& T=10^{\prime \prime} \frac{\mathrm{NT}}{\mathrm{M}} \\
& \text { a) Eo } 200 \mathrm{~V} \\
& M_{C}=\frac{E_{c}}{p} \\
& =E g a^{2} \\
& \begin{array}{l}
\left(\frac{\left.8 \times 10^{2}\right)\left(4 \times 10^{-4}\right)}{(8)\left(2 \times 10^{-5}\right)\left(10^{4}\right)}\right.
\end{array} \\
& =5 \times 10^{-2} \frac{\text { VOLTS }}{} \mathrm{NT}^{2} \\
& \text { b) } \left.n=20 \log \left[5 \times 10^{-2} \frac{\mathrm{VOLTS}}{\mathrm{NT} / \mathrm{M}^{2}}\right)\binom{\text { NT/M2 }}{10 \mathrm{MICROBARS}}\right] \\
& =20 \log _{10} 5 \times 10^{-3} \frac{\text { VOLTE }}{\text { MICROBAR }} \\
& =-20 \log _{00} 2 \times 10^{2} \\
& =(-20)(2.3) \\
& =-46.0 \mathrm{db} \text { R MIGROBAR } \\
& \text { c) } \begin{aligned}
P & =1 \frac{N T}{M_{2}} \\
\bar{Y} & =\frac{P a^{2}}{8 T} \sin u t
\end{aligned} \\
& \begin{aligned}
\bar{Y}_{\text {AMP }} & =\frac{P Q^{2}}{85(4 \times 10} \\
& =\frac{1}{8 \times 10^{4}} \\
& =5 \times 10^{-9} \mathrm{~m}
\end{aligned} \\
& \text { d) } R_{L}=5 \times 10^{6} \Omega \\
& f=10^{2} \mathrm{~Hz} \Rightarrow \omega=6.28 \times 10^{2} \frac{\mathrm{RAD}}{\mathrm{SE}} \\
& p=10 \text { microbars: } 1 \frac{N T}{\mathrm{M}}
\end{aligned}
$$

$$
V_{L}=\frac{R_{L}}{R_{L}+\frac{1}{d C}}\left[E_{C}-E_{0}\right]
$$

THE AG. COMPONENT OF OUTPUT VOLTAGE IS THEN:

$$
V_{L A C}=\frac{R_{L} E \sigma}{R_{L}+\omega C_{0}}
$$

$$
\begin{aligned}
& V_{b(A, C)}=\frac{R_{L} E_{C}}{R_{L}+\frac{d \omega C_{0}}{j+P}} \\
& =\frac{R_{b} M_{c} P}{R_{1} d \frac{d}{\omega} e_{0}} \\
& \frac{\left(5 \times 10^{6}\right)\left(5 \times 10^{-2}\right)(1)}{\left(5 \times 10^{6}\right)-j(27.8)\left(4 \times 10^{-4}\right)\left(6.28 \times 10^{-4}\right)} \\
& =\frac{25 \times 10^{4}}{5 \times 10^{6}-2.87 \times 10^{6}} \\
& \left|V_{\text {Lacs }}\right|=\frac{25 \times 10^{-2}}{5.93} \\
& =1.22 \times 10^{-2} \text { Volts (PEAK) } \\
& V_{L\left(0 . C_{i}\right)}=\frac{R_{L} E_{0}}{R_{L}+\frac{1}{2 C_{0}}} \\
& \left|V_{L(a . C)}\right|=\frac{5 \times 2 \times 10^{2}}{5.93} \\
& =169 \text { vours }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1-3) } a=4 \times 10^{-3} \mathrm{~m} \\
& t=10^{-5} \mathrm{~m} \\
& T=10^{4} \frac{\mathrm{NT}}{\mathrm{~m}} \\
& d=10^{-5} \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& E_{q} .4 .14 ; r_{g} \sigma 9
\end{aligned}
$$

$$
\begin{aligned}
& =95.7 \sqrt{13 \times 10^{4}} \\
& =3.45 \times 10^{4} H z \\
& \text { b) } f=10^{14} 1+z \\
& M_{c}=\frac{E}{E} . \\
& =\frac{\operatorname{Eg} a^{2}}{\operatorname{Sd} T} \\
& =\frac{\left(1,5 \times 10^{2}\right)\left(16 \times 0^{-6}\right)}{5 \times 10^{-5} \times 10^{4}} \\
& =3 \times 10^{-3} \mathrm{NT} \mathrm{~N} / \mathrm{M} \\
& =3 \times 10^{-4} \frac{\text { VOLTSR }}{\text { MIGRORAR }} \\
& \begin{aligned}
n & =20 \log 3 \times 10^{-4} \\
& -20104
\end{aligned} \\
& =20 \operatorname{Leg}^{\frac{1}{3}} \times 10^{4} \\
& =-20\left[\log 3 \cdot 33 \times 10^{3}\right] \\
& =-20[3.52] \\
& -70.4 d b
\end{aligned}
$$

$$
\begin{aligned}
& z=\frac{1}{j \omega C_{0}} \\
& C_{0}=\frac{E_{0} \pi a^{2}}{d}=\frac{27-8 \times 10^{-12} a^{2}}{a} \\
& \omega=2 \pi \times 10^{4} \\
& z=\frac{2 \pi \times 10^{+12} \times 10^{-1}}{27 \times 2 \pi} \\
& Z=27.8 \times 2 \pi 50^{2} \\
& =-\frac{10^{2} 5 \times 10^{5} \times 10^{6}}{27.8 \times 27 \times 16} \\
& =\frac{-1}{27.8 \times 2 \pi \times 16} \times 10^{9} \\
& =(276)(.16) \times 2 \pi \times 10^{5} \\
& \begin{array}{l}
=d\left(3.58 \times 10^{5}\right) \Omega \\
a=0=\frac{2 \pi \times 10^{4}}{3.43 \times 10^{2} 4 \times 10^{-3}=0.732}
\end{array}
\end{aligned}
$$

c) $K Q=E Q=\frac{2 \pi \times 10^{4}}{3.43 \times 10^{2} 4 \times 10^{-3}=0.732}$
$A S S U M I N G \quad N O M M A K \quad N C H O E N C E \quad(O=O), T H E$ CORRESPONOING PO/P REAR FROM QALLAATINE SH CRAPM ON PR $311=1.3$

$$
\begin{aligned}
d b & =20 \log 1.5 \\
& =20(0.115) \\
& =2.3 d b
\end{aligned}
$$

DFEODMG:

$$
-54 \mathrm{db}=20 \log _{10} M_{6}
$$

$$
\frac{1}{M_{e}}=10^{5 / / 200}=10^{2.7}=5.01 \times 10^{2}
$$

$$
\Rightarrow M_{c}=2 \times 10^{-3} \frac{\text { VObTS }}{\text { micROBGIS }}
$$

a) $P_{0 e}=70 d b R_{e} 2 \times 10^{* 4}$ miekoenR

$$
\begin{aligned}
& R_{6}=5 \times 10^{5} \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow p=\left(3.13 \times 10^{3}\right)\left(2 \times 10^{-4}\right) \\
& =6.26 \times 10^{\circ} \\
& =0.626 \text { M1GROGARS } \\
& M_{C}=\frac{E_{C}}{P} \neq E_{C}=M_{C} \\
& =\left(2 \times 10^{3}\right)(0.626) \\
& =1.25 \times 10=3 \text { VOLI } \\
& V_{L}=\frac{R_{i}}{R_{1}+X_{C}} E_{c} \\
& =\frac{5}{5-\frac{5}{0} 2}\left[1.25 \times 10^{-3} \text { volvs }\right]
\end{aligned}
$$

$$
\begin{aligned}
& 2 \times 7 \times 10^{-1+2}
\end{aligned}
$$

$$
\begin{aligned}
& z_{c}=\frac{1}{46} \\
& =\frac{1}{2 \pi f} \Rightarrow c=\frac{1}{2 \pi \%} \\
& -2 \pi\left(4 \times 10^{2}\right)\left(2410^{5}\right) \\
& =50.3 \times 10^{7} \\
& =0 . \frac{10^{-9}}{} \\
& =1.99 \times 10^{-9} \mathrm{~F}
\end{aligned}
$$

$$
\begin{aligned}
& z_{c}=2 \times 10^{5} \Omega(a) 4 \times 10^{2}+4
\end{aligned}
$$

$$
\text { c) } 54 \times 10^{04} \mathrm{~m}^{2}
$$

FOR A NORMAL PLANE WAVE THE INTENSITY IS:

$$
\begin{aligned}
& T=\frac{p^{2}}{2 / R}
\end{aligned}
$$

$$
\begin{aligned}
& =1.21 \times 10^{-6} \frac{w^{-6 T r s}}{m} \\
& W=p s \\
& =\left(4 \times 10^{-4}\right)\left(4.21 \times 10^{-6}\right) \\
& =16.54 \times 10^{-10} \\
& =1.68^{-9} \text { waters }
\end{aligned}
$$

$$
\frac{P_{001}}{P_{10}}=\frac{1.35 \times 10^{-12}}{1.68 \times 10^{-9}}=8.04 \times 10^{-4}
$$

$$
\begin{aligned}
& 11.6) \mathrm{m}=3 \times 10^{-3} \mathrm{k} 0_{5} \\
& a=5 \times 10^{-2} \mathrm{~m} \\
& R_{m}=10 \frac{k g}{m} \\
& S=5 \times 10^{4} \frac{N T}{m} \\
& B=0.75 \text { WERERS } \\
& \ell=10 \mathrm{~m} \\
& R_{E}=1 \Omega \\
& L E=10^{-5} H \\
& f=1.1 \times 10^{3} 12 \Rightarrow 4=977=6.91 \times 10^{3} \frac{R A D}{S E C}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow e_{e}^{e}=\frac{13+}{z m} \\
& \frac{Q}{5}=\frac{B 2}{2} \\
& M_{m}=\frac{e}{F l s}=\frac{1, B}{2}
\end{aligned}
$$

MODELING AS A SIMRLE OSCILLATOR:

$$
\begin{aligned}
& Z_{m}=R_{m}+i\left(6 m=\frac{S}{2}\right) \\
& =10+j\left[\left(6.91 \times 10^{3}\right)\left(3 \times 10^{-3}\right)-\left(5 \times 10^{-1}\right)\right] \\
& =10+0[20.8 \cdot 7.2] \\
& =10+613.6 \\
& \left|Z_{m}\right|=16.9 \frac{k 6}{m} \\
& S=\pi a^{2} \\
& =\pi \times 25+10^{-4} \\
& =7.86 \times 10^{-3} \\
& M_{m}=\frac{105}{2 m}=\frac{(0.75)(10)\left(7.86 * 10^{2.3}\right)}{16.9} \\
& =3.48 \times 10^{\circ 3} \frac{\text { Volts }}{\text { NTM2 }} \\
& n_{m}=20 \operatorname{LOQ}_{10} .348 \times 10^{-2} \frac{V O L T S}{N T / M 2} \frac{N T M}{1 O M C R O B A R S}
\end{aligned}
$$

$$
\begin{aligned}
& =(-20)(3.46) \\
& =69.2 d b \quad / \operatorname{le} \frac{1 V}{}
\end{aligned}
$$

b) DETERMINATION OF PROPER LOAD RESISTOR

$$
\begin{aligned}
& Z_{I}=\text { iNTERNAL IMPEdANCE } \\
& z_{I}=z_{E}+\frac{\phi^{2}}{Z_{R_{2}} D^{2}} \quad ; \phi=B \ell \\
& =z_{E}+\frac{B^{2}}{Z_{m}}{ }^{2} \\
& =Z_{E}+\left(\frac{B Q_{m}}{Z_{m}}\right)^{2} Z_{m} \\
& R_{e}\left[z_{I}\right]=R_{I}=R_{E}+\left(\frac{B Q}{z_{m}}\right)^{2} R_{m} \\
& =1+\left[\frac{(0.75)(10)}{16.9}\right]^{2} 10 \\
& =1+[0.444]^{2} 10 \\
& =1+1.97 \\
& =2.97 \Omega \\
& \text { so LETER } R_{L}=2.97 \Omega \\
& W=\frac{E 2}{4 R_{L}} \\
& \frac{w}{p}=\frac{1}{4 R_{L}}\left(\frac{E}{P}\right)^{2} \\
& n=10 \log \cdot 0 \frac{1}{4 R_{L}}\left(\frac{E}{P}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =10 \log ^{20} \frac{(3.48)^{2} \times 10^{-4}}{4 \times 2.97} \frac{10^{-3} \text { warts }}{[10 \text { microbes. } 2}
\end{aligned}
$$

$$
\begin{aligned}
& =-10 \log _{10} 9.8 \times 10^{3} \\
& =(-10)(3.99) \\
& =-39.9 \mathrm{db} \text { Re } 10^{-3} \text { watts o.0micRorars }
\end{aligned}
$$

$$
\begin{aligned}
& t=04 \\
& h \ell=\frac{2 \pi+(04)}{c}
\end{aligned}
$$

11:9) THE PRESSURE AMPLITUDE ON THE ERONT SURFACE OE THE MOVING ELEMENT OE A VELOCITY RIBBON MICROPHONE MOUNTED IN. A CIRCULAR BAFFLE OE RADIUS Q IS GIVEN $13 Y$ - eq 11.37 AS:

$$
P_{0}=\sqrt{5-4 \cot k} \quad=\frac{P^{t}}{D}=\sqrt{5-4 \operatorname{coh} x}
$$

WHERE P IS THE PRESSURE AMPLITUDE OF THE WAVE INCIDENT AT AN ANGLE O:

$$
P=P e^{j(\omega t-k x \cos \theta-k y \operatorname{tin} \theta)} \simeq p e^{d(\omega t-k x \cos \theta)}
$$

FOR NORMAL INCIDENCE (OO):

$$
\begin{aligned}
& P=P\left(e^{j(\omega)-k x)}\right. \\
& p=\frac{w}{c}=\frac{2 \pi f}{C}
\end{aligned}
$$

THE TOTAL FORGE ON THE RIBBON OF SURFACE AREA S IS THEN:

$$
E=\left[p_{\sim} R R O N T-P_{Q B A C K}\right] S
$$

THE PRESSURE AMPLITUDE ON THE RIBBONS BASIE IS EGUIVALENTTTO THAT OF THE INCIDENT WAVE THUS:

$$
\begin{aligned}
& F=\left[p_{0} e^{j(\omega t-k(0) \cos \theta)}-p e^{j(\omega t-k \ell \cos \theta)}\right] s \\
& =\left[P_{0}-P e^{j k e c \hat{j} \theta}\right] S e^{j \cot } \\
& =\left[\sqrt{5-1001 k x}-e^{j k x \cos \theta}\right] p s e^{j u t} \\
& =[\sqrt{5-4 \cos k \ell} \cdot \cos (k l \cos \theta) \cdot j \sin (k l \cos \theta)] p s e^{i \omega t}
\end{aligned}
$$

FOR NORMAL INCIDENCE:
$F=[\sqrt{5-4 \operatorname{cod} k d}-\cot k \ell \cdot d \ln k] p s e^{j \cot }$

$$
=\sqrt{(\sqrt{5-4 \operatorname{con} k}-\cos k)^{2}+\operatorname{tra}^{2} k \ell \quad P S e^{\text {rat } \phi 1}}
$$

THE SPATIAL FORE E PHASE IS THEN:

$$
\begin{aligned}
\angle E & =\operatorname{atan} \frac{D_{m} E_{\text {space }}}{R E \operatorname{space}(k e \cos \theta)} \\
& =\operatorname{atan}\left[\frac{\sin (k l \cos \theta)}{\sqrt{5-4 \cos \ell}-\cos (k \cos \theta}\right]
\end{aligned}
$$

FOR NORMAL INCIDENCE:

$$
2 F=\operatorname{atan}\left[\frac{\sin k e}{\sqrt{5-4 \cos k}-\cos k e}\right]
$$

ASSUMING THE SYSTEM IS MASS CONTROLLED, THE VELOCITY AMPLITUDE IS: ($\theta=0$)

$$
\begin{aligned}
V & =\frac{f}{j \omega m} \\
& =\frac{\rho s e^{j \omega t}}{j \omega m}\left[\sqrt{5 \cdot 4 \omega 0 k l}-e^{j k l}\right]
\end{aligned}
$$

the velocity amplitude is then:

$$
\begin{aligned}
& V_{A M P}=\frac{P S}{\omega m}\left|\sqrt{5-4 \cos k l} \cdot e^{j k e}\right| \\
& =\frac{P S}{\omega m}|\sqrt{5-4 \cos k \ell}-\cos k \ell+j \sin k \ell| \\
& =\frac{\operatorname{LS}}{\operatorname{am}}\left[\{\sqrt{5 \cdot 4 \cos k l}-\cos k l\}^{2}+\sin ^{2} k l\right]^{1 / 2} \\
& =\frac{R S}{\operatorname{com}}[(5.4 \cos k l) \cdot 2 \sqrt{5-4 \cos k l} \cos k d+1]^{1 / 2} \\
& =\frac{p s}{\omega m}[4-4 \cos k l-2 \sqrt{5 \cdot 4 \cos k l} \cos k \ell]^{1 / 2} \\
& =\frac{\sqrt{2} \operatorname{\omega m}}{\operatorname{\omega m}}[2-\cos k \ell\{2-\sqrt{5-4 \cos k \ell}\}]^{\frac{1}{2}} \\
& =\frac{\sqrt{2} p s}{2 \pi f m}\left[2-\cos \frac{2 \pi f l}{c}\left\{2-\sqrt{5-4 \cos \frac{2 \pi f l}{c}}\right]^{1 / 2}\right.
\end{aligned}
$$

THE VOLTAGE GENERATED IS:

$$
e=B L_{c} V
$$

THUS:

$$
\begin{aligned}
|E| & =B \ell_{C}|V| \\
E & =B \ell_{C} V_{A m p} \\
& =\frac{\sqrt{2} P S B \ell_{c}}{C m}[2-\cos k \ell\{2-\sqrt{5-4 \cos k \ell}\}]^{1 / 2}
\end{aligned}
$$

AND:

$$
\begin{aligned}
& M_{v}=\frac{E}{P}=\frac{\sqrt{2} \sin \operatorname{coc}}{\cos }[2-\cos k A\{2-\sqrt{5-4 \cos k l}\}]^{1 / 2} \\
& =\frac{\sqrt{5} \sin \ln c}{2 \pi f}\left[2 \cdot \cos \frac{2 \pi f e}{6}\left\{2 \cdot \sqrt{5-4 \cos \frac{2 \pi f e}{6}}\right\}\right]^{1 / 2}
\end{aligned}
$$

PROBLEM DONE THIS WAY DUE TO LACK OF PROBLEM COMPREHENSION

11-11) $P=2 P \cos u t \operatorname{Ln} k x$
a)FOR CYLNDER UENGTH D\& IK

THE NET FORCE ACTINO TO DISRGACE THE
CYLYNOER IS GIUENBY.

$$
\begin{aligned}
f & =5 P \cdot L S \\
& =L S E \cdot[2 p \operatorname{cod} u t A i n k x]
\end{aligned}
$$

$=20 k P S$ vod ctt cot kx

$$
\begin{aligned}
& \text { b) ANTMODES OCCUR WHEN } \operatorname{din} k x=1 \quad(\text { PAMPLTUO } \\
& \Rightarrow x=\frac{(2 n+1)}{2 k} . n=0,1,2, \ldots,
\end{aligned}
$$

SO, AT PRESSURE ANTINOOES:

$$
\begin{aligned}
& f=2 d k p S c o y \cot \cot k\left[\frac{(2 n+1) \pi}{21}\right] \\
&=-2 L K D S C a \cot \operatorname{cov} \frac{(2 n+1) \pi}{2} \\
&=
\end{aligned}
$$

THE CORRESPONDING VELOEITY EXPRESSION
IS CIVEN BY:
$V=f Z_{m}=-2 K P S$

$$
\text { - } \quad \mathrm{m}
$$

ATTHE PRESSURE ANTINODES:

$$
V=-\frac{2 k p s}{2 n} \cot \cos \operatorname{sen} k[(2 n+1) \pi]
$$

$$
=-2 e k p s \operatorname{cotect}
$$

$$
V_{A M P L T U D E}=\frac{21 E Q S}{1 E N} \quad 1 S M A X I M U M \Rightarrow W E \text { ARE }
$$

TAT:THE ANTINODES OF NELQCITY.
11.14)

$$
\begin{aligned}
& M_{A}=5 M_{B} \\
& d=1.5 \mathrm{~m} \\
& E_{A}^{\prime}=10^{-3} \mathrm{~V} \\
& T_{B}=1 \mathrm{AMP} \\
& f=500 \mathrm{HE}
\end{aligned}
$$

a)

$$
\begin{aligned}
M_{A}^{2} & =\frac{2 d \lambda E_{A}^{\prime}}{\rho_{0} C E_{B}} \\
& =\frac{2 d \lambda E_{A}}{\rho_{0} C E_{B}} \times \frac{M_{A}}{M_{B}} \\
& =\frac{10 d \lambda E_{A}}{p_{0} C I_{B}} \\
& =\frac{10 d(c / f) E_{A}^{\prime}}{\rho_{0} C I_{B}} \\
& =\frac{10 d E_{A}}{\rho_{0} I_{0}} \\
& =\frac{10 \times 1.5 \times 10-3}{1.21 \times 1} \\
& =1.24 \times 10^{-2}
\end{aligned}
$$

$$
\Rightarrow M_{A}=0.111 \frac{40 L T}{N T / M^{2}}=\frac{4.98 \times 10^{-4}}{1.11 \text { VOLT }}
$$

b)

$$
\begin{aligned}
P_{B} & =E_{1} R_{M} \\
& =10^{-3} / R_{1.1 T} 4.91 \times 10^{-1} \\
& =9 \times 10^{-2} \text { MICROBARS } \\
& .1^{2}
\end{aligned}
$$

$$
\text { 12.1) } \begin{aligned}
x & \text { cut } \\
l_{x} & =5 \times 10^{-3} \mathrm{~m} \\
l_{y} & =3 \times 10^{-2} \mathrm{~m} \\
l_{z} & =10^{-2} \mathrm{~m} \\
\text { a) } E_{x} & =10^{2} \mathrm{~V} \\
\frac{5 \pi}{3} & =-l_{y} \geq l_{x}\left(\frac{E_{y}}{5_{y}}\right)+\frac{d_{12} E_{x}}{l_{x}} \\
& =\frac{1}{Y} \frac{(0)}{l_{x} l_{z}}+\frac{\left(2.2 \times 10^{-12}\right)\left(10^{2}\right)}{5 \times 10^{-5}} \\
& =0.46 \times 10^{-7} \\
& =4.6 \times 10^{-8}
\end{aligned}
$$

b) $\frac{\zeta \eta}{\delta y}=-s_{22}\left(\frac{F_{y}}{S_{y}}\right)+\frac{d_{12} E_{x}}{S_{x}}$

$$
\Rightarrow \quad \frac{F_{y}}{S_{y}}=\frac{\underline{1}_{2}}{S_{22}}\left(\frac{672}{5 \%}-\frac{d_{12} E_{x}}{l_{x}}\right)
$$

FOR RESTRICTED LONGITUDINAL EXPANSION: $\frac{5 Y}{8 Y}=0$

$$
\Rightarrow \frac{F_{y}}{S_{y}}=\frac{1}{522} \frac{d_{2} E x}{l_{2}}
$$

$$
=\frac{Y d_{2} E_{x}}{}
$$

$$
\frac{\left(7.9 \times 10^{10}\right)\left(2.3 \times 10^{-12}\right)\left(10^{2}\right)}{5 \times 10^{-3}}
$$

$$
=3.63 \times 10^{3} \frac{\mathrm{NT}^{2}}{\mathrm{~m}^{2}}
$$

Bob Marks

$$
\begin{array}{cc}
1 & 10 \\
3 & 1,00 \\
8 & 0,10 \\
13 & 1,00 \\
16 & \\
19 & 1.0 \\
20 & 1,
\end{array}
$$

12.1) $x-\cos$

$$
\begin{aligned}
& l_{x}=5 \times 10^{-3} \\
& l_{y}=3 \times 10^{-2} \\
& t_{y}=10^{-2}
\end{aligned}
$$

a)

$$
\begin{aligned}
& E_{y}=100 V \\
& \frac{5 x}{5 x}=-522\left(\frac{E_{y}}{S y}\right)+\frac{d_{12} E x}{y_{x}}
\end{aligned}
$$

FOR UNCONSTRAINED CRYSTAL,FY=O
b) $\frac{5 n}{5 y}=-52 n\left(\frac{F_{Y}}{5 y}\right)+\frac{d_{1} E_{x}}{L_{y}}$

$$
\text { FOR cONSTRAINED CRYSTAL, } \frac{6 n}{5 x}=0
$$

$$
\frac{E}{5 y}=\mathbb{d}_{12} E x
$$

$$
=\frac{4.6810^{-6}}{1.27 \times 10^{-11}}
$$

$$
=3.62 \times 10^{3} \frac{n n^{2}}{n^{2}}
$$

e) $d W=F \cdot d S$

$$
\begin{aligned}
& \frac{\operatorname{cn}}{\delta y}=\frac{d_{1} E_{x}}{l_{x}} \\
& E=E D=\frac{E_{x}}{f_{x}}
\end{aligned}
$$

ASSMETHERE ARE NO EATE aNAG LOSSES IN TUE CRYSTAE

Che mevenal mayp.

$$
\begin{equation*}
=\frac{5+0}{2} \frac{y}{d y} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{6 \eta}{5}=\frac{19}{2} \text { En } \\
& =\frac{(2.3 \times 10-12)\left(10^{2}\right)}{5 \times 10^{-3}} \\
& =0.46 \times 10^{-9} \\
& =4.6 \times 10^{-6}
\end{aligned}
$$

$$
\begin{aligned}
& 12.3) \text {) } h=\left(A e^{j k y}+Q^{j k y}\right) e^{j \operatorname{jot}} \\
& \left.n\right|_{y=0}=0 \\
& \left.n\right|_{y=0}=0=(A+B) e^{i \operatorname{sit}} \\
& +A=-D \\
& \therefore h=A\left(e^{j k y} e^{j k \varphi}\right) e^{j \omega t} \\
& =A\left(e^{\left.\dot{d} k+e^{-d k y}\right) e^{d .2 t}}\right. \\
& =-\operatorname{cas}+\operatorname{covec} \\
& =A^{\circ} A+n+Y Q^{i+4 t} \\
& \text { SY) }\left.\right|_{y=0}=A^{2} k \cot Q^{4}
\end{aligned}
$$

FOR EMNOEAENTAL FREG.:

$$
\begin{aligned}
& k D=\frac{\operatorname{Lb}_{0}}{2} \frac{\pi}{2} \\
& 27 \text { 有 }=\frac{\pi C u}{2 a} \\
& f_{0}=\frac{c^{y}}{4 V_{y}} \\
& =\frac{5.45 \times 10^{3}}{443 \times 10^{2}} \\
& =\frac{545 \times 10^{3}}{1.2 \times 10^{11}} \\
& =4.54 \times 10^{11} \mathrm{HE}
\end{aligned}
$$

b)

$$
Q_{1}=2 \times 10^{4}
$$

$\phi^{2}=\left(\frac{d_{12} d_{z}}{2}\right)^{2}$

$$
5.28 \times 10^{-6}
$$

$L=\frac{0.4 \leq}{2 \phi}$

$$
=\frac{\left(2.85 \times 10^{3}\right)\left(15 \times 10^{-7}\right)}{6.56 \times 10^{2}}
$$

$$
=6074
$$

$$
C=\frac{\frac{5}{2} 52214}{5 y^{2} 20.20 .2}
$$

$$
=\frac{8.3 .2 \times 10^{-6} \times 1.27 \times 10^{-14} \times 3 \times 10^{12} 2}{\pi^{2} \times 5 \times 10^{-5}}
$$

$$
=2 \times 10^{-14} \mathrm{~F}
$$

$$
Q=\frac{\omega_{1} L}{R} \Rightarrow R=\frac{\omega_{1} L}{Q_{1}}
$$

$$
=\frac{2 \pi \times 4.54 \times 10^{4} \times 6.09 \times 10^{2}}{2 \times 10^{4}}
$$

$$
=8.66 \times 10^{3} \sqrt{2}
$$

$$
\cos _{x}^{\prime}=\frac{E_{x} \operatorname{c}_{y} d^{2}}{(4.45(285 x)}
$$

$$
=\frac{(4.45)\left(5 \cdot 8 \cdot \times 10^{-12}\right)\left(3 \times 10^{-4}\right)}{5 \times 10^{-3}}
$$

$$
=2.36 \times 10^{-12} \mathrm{~F}
$$

12.13) a) $E_{x}=3 \times 10^{-9}$

$$
\begin{aligned}
f= & \frac{C_{x}}{2 x_{1}} \\
= & \frac{5 \times 10^{3}}{6 \times 10^{\circ}} \\
= & 9 \cdot 6 \times 10^{5} \mathrm{HE}
\end{aligned}
$$

b) $W=\frac{t^{2} E^{2}}{p_{0} C_{0}} \frac{1}{S_{x}}$

$$
w=\left(\frac{2 e_{n} 5 n}{n}\right)^{2} \frac{S_{n}}{\sec _{0}}
$$

$$
\frac{w}{S_{n}}=\left(\frac{e_{n}^{n} e^{2}}{\left.\frac{w^{n}}{}\right)^{2} c_{0}} \frac{1}{p_{0} e_{0}}\right.
$$

$$
E_{x^{2}}^{2}=\left(\frac{w^{x}}{S x}\right) p_{0} \cos _{0}\left(\frac{e_{x}}{2 e_{1}}\right)
$$

$$
\begin{aligned}
& =(5 x) p_{0}\left(2 e_{1}\right)\left[\frac{3 x 10^{-3}}{0.34}\right]^{2} \\
& =(5 \times 104)\left(1.4510^{6}\right)
\end{aligned}
$$

$$
=7.41 \times 10^{10}\left(77.4 \times 10^{-8}\right)
$$

$$
e^{3} 54 \times 10^{4}
$$

$$
\begin{aligned}
& W_{H_{0} O}\left(p_{0} C_{0}\right)_{H_{2}}=W_{n 1 R}\left(p_{0} C_{0}\right)_{a r}
\end{aligned}
$$

$$
\begin{aligned}
& =(5) \frac{\left(14.8 \times 10^{5}\right)}{\left(4.15 \times 10^{2}\right)} \\
& =17.8410^{2}
\end{aligned}
$$

C) AT RESONANCE

$$
X_{A M P} \in \frac{b_{0}}{\rho_{0}}
$$

THEN IN WATER:

$$
d_{\mathrm{H}_{2} \mathrm{O}} d\left(\frac{E}{\beta_{0} \mathrm{C}_{\mathrm{c}}}\right)_{\mathrm{H}_{2 \mathrm{O}}}
$$

50 FOR EQUAL AMPLITUDE DISPLACEMENTS IN AIR E WATER $\left(\frac{E}{p e}\right)_{H_{2} O}=\left(\frac{E}{S E}\right)_{A 1 R}$

THE POWER OUT, IN ANE IS

$$
w=\frac{\theta^{2} t^{2} \operatorname{tn}^{2}}{2}
$$

AND THE MNENSVTY:

$$
\begin{aligned}
& =\left[\frac{2 \times 0.17 \times 2.1410^{2}}{\left.2.48 \times 10^{6}\right)\left(3 \times 10^{2}\right.}\right] \times 4.15 \times 10^{2} \\
& =\left(1.35 \times 10^{01}\right)^{2} \times 4.15 \times 10^{2} \\
& =14.0 \frac{\text { WATTS }}{m^{2}} \times \frac{1 m^{2}}{10^{4} \mathrm{~cm}} \\
& =1.4 \times 10^{-3} \frac{\text { Wits }}{e m 2}
\end{aligned}
$$

12.8) $y_{y}=6 \times 10^{-2} \mathrm{~m}$

$$
\ell_{z}=2 \times 10^{-2} \mathrm{~m}
$$

$$
x_{x} y^{\prime} 6 x x_{0} 10^{-3} m
$$

a) $f_{1}=\frac{C_{0}}{45}$

$$
\begin{aligned}
& =\frac{45 \times 10^{2}}{}=\frac{24810}{}=1.875 \times 10^{4}+2
\end{aligned}
$$

b) $E=10^{2}$

$$
=\left(172 \times 10^{4} \text { warps } \quad \$ 45\right. \text { wath }
$$

c) POR 1 vieRataR
$\ell_{m}(Y)=2 \pi \times 1.875 \times 10^{4}\left(1-0.18^{2}\right)^{\frac{(8.55 \times 1072}{2}(2 \times 105)} 4 \times 10^{2}$

$$
\begin{aligned}
& =2.75 \pi \times 10^{4} \times 0.968 \times 8.85 \times 10^{-12} \times 12 \times 10^{-4 / 6} \cdot 10^{-3} \\
& =(2.75 \pi \times 0.968 \times 8.55 \times 2) \times 10^{-9}
\end{aligned}
$$

$$
\because 148 \times 10^{7} 7 \text { gracas? }
$$

$$
R(y)=\left(\frac{d_{22} l_{x}}{S_{2}}\right)^{2} \frac{1}{\rho^{\prime} S_{y}}
$$

$$
=[4.2) \times\left(2 \times 10^{-2}\right]^{2}\left(1.48 \times 10^{6}\right)\left(12 \times 10^{6}\right)
$$

$$
=\frac{4 \times 6.2 \times 6.2}{1.48812} \times 10^{05}
$$

$$
=\frac{6.256-2}{1.48 \times 5} \times 10^{-5}
$$

$$
=8.66 \times 10^{-5} \text { SEMENE }
$$

$$
\gamma=8.66 \times 10^{-5}+j 1.48 \times 10^{0.7}
$$

$$
Y_{\text {rom }}=N Y \quad \Rightarrow N=400
$$

$$
Y_{\text {TOML }}=\left[3.46 \times 10^{-2}+\frac{2}{6}\left(5.92 \times 10^{-5}\right]\right. \text { (SEMENS) }
$$

$$
\begin{aligned}
& W_{\text {matat }}=400 \times W_{1} \\
& =4 \times 10^{2}(6.2)^{2}\left(2 \times 10^{2}\right) 10^{4} \\
& =\frac{8 \times 6.2 \times 6.2}{1.48 \times 10^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 12.23) } 2=6 \times 10^{-2} \mathrm{~m} \\
& r_{1}+3 \times 10^{\circ} m \\
& 6 \cdots 5 \times 10^{-4} \mathrm{~m} \\
& Q_{0} 0.4 \quad W_{6} \text { 上er } \\
& \text { K }=\dot{8} 0
\end{aligned}
$$

a)

$$
\begin{aligned}
& A=2 Y K B_{0} \\
& k=2 Y O_{0} \\
& =242110^{1604} \\
& =16 \times 10
\end{aligned}
$$

b) $\left(\frac{b c}{S X}\right)_{m}=16$ $\angle 2=1 \angle E$

$$
\begin{aligned}
A Q & =14 Q^{2} A \\
& =(-7.1510-5)(0 \cdot 16)\left(6+10^{2}\right) \\
& =6.55 \times 10-7 n
\end{aligned}
$$

C)

$$
\begin{aligned}
& F_{n}=-y^{S} \frac{S}{5} \\
& --54 R B^{2} \\
& \therefore 2 \pi r \text { Y K }^{2} \\
& =-2 \pi\left(5 \times 10^{25}\right)\left(5 \times 10^{-4}\right)\left(21 \times 10^{10}\right)\left(-7.15^{4} 10^{-5}\right)(0.16) \\
& =37.9 \mathrm{NT}
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) } B=B_{0}{ }^{+} \mu_{i} \mu_{\theta} H_{i} \\
& =0.4+80 \times 4 \pi \times 10^{-7} \text { \& } 210^{2} \\
& =0.4+1.28 \pi \times 10^{2} \\
& =0.4+0.44 \\
& =44 \\
& a t=1<a^{2} \ell \\
& -7.15 \times 10^{-5}(4.4)^{2} \times 10^{22} 4 \times 10^{2} \\
& =-8,30 \times 10^{-7} \\
& \Delta(\Delta \lambda)=-(5-3006.55) \times 10^{-7} \\
& =-1.75 \times 10^{-7} \mathrm{~m} \\
& \text { e) } F_{x}=-5 y \frac{\delta}{5 x} \\
& =+1.51 \times 10^{-5} \times 21 \times 10^{10} \times \frac{8.8 \times 10^{-9}}{6 \times 10^{-2}} \\
& =45.6 \mathrm{MT} \\
& \Delta F=45.6-37.9 \\
& \text { \& 7.7 107 }
\end{aligned}
$$

PROBEEMS 12.16 多 12.19 WHE HEPEFULY RE SUEMHTEG WHTH EHAPT. 3 PROBLEMS ON TUES.

$$
\begin{aligned}
& \text { 13.1) a) } f=10^{2} \mathrm{kz} ; \quad I=60 \mathrm{db} \\
& \text { EROM FIG } 13.10 \\
& \text { LL } 36 \text { PHONS } \\
& \text { from fic } 13.12 \\
& L \approx 0.70 \text { SONES } \\
& \text { b) FOR } L=0.07 \text { SONES, LLE } 17 \text { PHONES (FRONFIG 13.12) } \\
& \Rightarrow I \simeq 48 d b \quad V \text { (F1G 13.10) } \\
& \text { c) FOR } L=7.0 \text { SONES, } L \angle W 6 \text { PHONES (FROM FIK 13.12) } \\
& \Rightarrow I=74 d b \quad \text { (F1G13.10) }
\end{aligned}
$$

LOUD NESS
LEVER
13.2) a) 50 Hz a 85 Lb
100.Hz@sodb
200 me 75 db
500. m @80db
1000 ME 075 db
10.000 Mz 20db
b) $50 \mathrm{~Hz} @ 55 \mathrm{db}$
$1004850 d b$
200 kz @ $45 d b$
$5001480\left(30 d b^{3}\right.$
1000 Hz 4 45 db
$10,000 \mathrm{~m}$ \& 40db
76 PHONS
72 HONS
SiPHONS
$\therefore 75$ PHONS
(72) PHONS
5 MONS
c) \triangle LOuDNESS LEVEL
17 PHONS
18 PHONS 258 PHONS
26 PHONS
(23) 47 HON

- 45 hons
28 phons
246 PHONS
4557 PHONS
$\checkmark 30$ PHONS
1444 PHONS

$$
\begin{aligned}
& \text { 13.5) } r=a \cdot p+a \cdot p^{2}+a_{2} p_{2}^{3} \\
& =a_{1} p \cos \omega+a_{2} p^{2} \cos ^{2} \omega \cos ^{2}+a_{3}^{3} \cos { }^{3} \cos ^{2} \\
& =a_{1} \beta \cos +\frac{a_{2} p^{2}}{a_{2} p}[1+\cos +2 \operatorname{tat}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{92 p^{2}}{2}+p^{2} a_{1}+\frac{3 a_{3}}{4} p^{2}\right] \operatorname{cogulb} \\
& 4 \operatorname{qap}^{2} p^{2} 2 \cot +\frac{y^{3} p^{3}}{4} \cos +\mathrm{t}
\end{aligned}
$$

13.7) a) 200 HE MEROM THE DFFERENCE OF THE FUNDEMENTAL OF $120 O M Z$ AND TAE SECOND HARMONIE OF TOOHE.

2(700) 1200 : 200 H2
b) 300 HE 15 FROM THE DFFERENAE OF 1200's SECONO HARMONIE ANO TOQ'S THIRA harmonic.

$$
2(1200)-3(700)=2400-2100=3004=
$$

c) HOOO HE IS THE DHFERENCE OF THE SECONA HARMONBCS GF 1200 He AND 700 HE.

$$
2(1200)-2(700)=2400=1400=1000 \mathrm{~Hz}
$$

d) $2200 H E$ THE DIFFEREACE OF THE THRE HARMONIG OF 1200 HE AND THE SEGQNO OF FOCHE.

$$
\begin{aligned}
3(1200)-2(700) & =60091400 \\
& =2200 \mathrm{H}
\end{aligned}
$$

C) 2500 HZ IS THE SUM OF THE FUNDEMEATAK OF 1200 H 宁 THE SECOMO HARMONHE GE TOOM N

$$
1200+2(700)=1200+1100=240012
$$

1) 3300 Hz 15 THE SUM OF THE FUNOEMENTAL

$$
\begin{aligned}
1200+3(700) & =1200+2100 \\
& =330012
\end{aligned}
$$

$$
\begin{aligned}
& \text { 13.9)PSL=SPL-10 } \log _{10} \Delta f \\
& =20 \log _{10} P_{d} p_{0}-10 \log _{10} \Delta f \\
& n_{c}=-50 d b \text { Re } \frac{1}{\text { MCROBAR }}=20 \log \log _{10} M_{c} \\
& \Rightarrow 5 / 2=\log _{10} 1 / M \\
& \Rightarrow \frac{1}{M_{e}}=0.316 \times 10^{3} \text { microbars/vout }
\end{aligned}
$$

$$
\begin{aligned}
& P_{e}=V / M_{c}=10^{-3 / 3} 36 \times 10^{-2} \\
& =3.16 \times 10^{-1} \text { microbans } \\
& P_{0}=2 \times 10^{-4} \text { microbar } \\
& S P_{L}=20 \log _{10} P_{3.1} P_{8} \\
& =20 \log _{10} \frac{3.16 \times 10^{-1}}{2} 10^{4}-3 \\
& \begin{array}{l}
=20 \log _{10} 1058 \times 10^{5} \\
=20(3)^{3}
\end{array} \\
& =20(3.2) \\
& =64 \mathrm{db} \text { a } 2 \times 10^{-4} \text { microbar } \\
& \begin{aligned}
10 \log 104 t & =10 \log 10,50 \\
& =10(1.70)
\end{aligned} \\
& =17 d b \\
& \therefore P S L=64-17=47 d b
\end{aligned}
$$

13.10) ISL $=10 \log \frac{I}{I_{0} \Delta f} \quad y I_{0}=10^{-12} \frac{\text { watt }}{\mathrm{m}^{2}}$

$$
I_{1}=\frac{10}{1} \frac{\text { wart }}{m^{2}}
$$

a)
)

$$
f=10^{2} H E \Rightarrow \frac{1}{4}=10^{\circ} \frac{\text { war }}{m}
$$

$$
I S L=10 \log 10^{4}
$$

$$
-40 d b \text { Re } 10^{-12} \frac{\text { water }}{m^{2}}
$$

ii)

$$
f=5 \times 10^{2}+2 \Rightarrow I 1^{2} 2 \times 10^{-9} \frac{m^{2} T}{m}
$$

$$
\begin{gathered}
I S L=10 \log \left(2 \times 10^{3}\right) \\
-2010^{-12} \mathrm{H}
\end{gathered}
$$

$$
\begin{aligned}
& =10 \log R(2.10 \\
& =33 d b R^{-12} \frac{\mathrm{kATt}}{\mathrm{~m}^{2}}
\end{aligned}
$$

iii) $f=10^{3} \mathrm{~Hz} \Rightarrow I=10=\frac{W A T T}{m^{2}}$

$$
\begin{aligned}
\text { ISL } & =10 \log _{10} 10^{3} \\
& =30 \mathrm{db}
\end{aligned}
$$

b) $I L=I S L+10 \log 10 \Delta f$
for interval $\quad 10_{12}^{2}+f<5 * 10^{2} H z$ $\Delta f=5 \times 10^{2} \mathrm{HE} ; 1 \leq 1=31.5 \mathrm{db}$

$$
\begin{aligned}
I L_{b} & =31.5+10.2 a 10 A \\
& =31.5+10 \operatorname{Ly} 105 \times 10 \\
& =31.5+2.70
\end{aligned}
$$

$=58.5 \mathrm{db}$ Re $10^{-12} \frac{\text { MATT }}{m^{2}}$
$58.5=10 \log 1010^{-12}=5.55-12=\log 10 \mathrm{Ib}$ $\log _{1} I_{b}=-6.15$

$$
\begin{aligned}
& 1 / I_{b}=1.41 \times 10^{6} \\
& I_{b}=7.07 \times 10
\end{aligned}
$$

$$
\begin{aligned}
& \Delta f=4 \times 10^{2} \mathrm{~Hz} ; \text { ISL } \because 36.5 \mathrm{db} \\
& \begin{aligned}
I L_{q} & =36.50+10 \log , 400 \\
& =36.5 \cdot 2600
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { FRRKNTERUAL } 5 \times 10^{2} H 2 \& f \& 10^{3} \mathrm{M}
\end{aligned}
$$

$$
\begin{aligned}
& I_{e q}=I_{a}+I_{b} \\
& =(17.6+7.1) \times 10^{-7} \frac{\text { waters }}{m^{2}} \\
& =24.7 \times 10^{-7} \frac{\text { WAT }}{m^{2}} \\
& I L_{E Q}=10 \log _{10} 2.47 \times 10^{6} \operatorname{Re} 10^{-12} \frac{\mathrm{mAT}}{\mathrm{~m}} \\
& =10[6.39] \\
& =63.9 \mathrm{db} \text { Re } 10^{-12} \text { mat }
\end{aligned}
$$

c) FROM FIG $13.10 \div 13.12$

$$
\begin{aligned}
& I L_{a}=62.5 d b, f=350 \mathrm{~Hz} \Rightarrow L L=60 \text { HONS } \Rightarrow L=4.5 \text { sONES } \\
& I L_{b}=5 \mathrm{~g} .5 \mathrm{db}, f=750 \mathrm{H} 2 \Rightarrow L L=59 \text { HONS } \Rightarrow L 4.0 \text { SONES } \\
& \Rightarrow \text { TOTAL LOUDNESS }-9.5 \text { SONES }
\end{aligned}
$$

14.1) a)

$$
\begin{aligned}
I & =\frac{w}{a}\left(1-e^{-\frac{a c}{4 v} t}\right) \\
I_{L} & =10 \log _{10} \frac{I_{0}}{I_{0}} \Rightarrow I_{0} 0^{-12} \frac{w A T T S}{m^{2}} \\
& =\frac{10}{\log e^{2}} \log \frac{I_{0}}{I_{0}} \\
& =\frac{10}{\log e} \ln \frac{w \times 10^{12}}{a}\left(1-e^{\left.-\frac{a c}{4 v}\right)}\right.
\end{aligned}
$$

$$
=\frac{10}{\log 10} \frac{1}{\left(1-e^{-\frac{q c}{4} t}\right)} d t\left(1-e^{\left.-\frac{q c}{4 v} t\right)}\right.
$$

$$
=\frac{10}{\log _{00} e}\left[-\frac{q c}{4 V} \frac{e^{-\frac{q c}{4 v} t}}{1-e^{-\frac{9 c}{4 t} t}}\right]
$$

$$
\begin{aligned}
& =\frac{2.5}{\log _{40} e} \frac{a c}{V} \frac{1}{e^{Q t}-1} \\
& =\frac{2.5}{3.303} \frac{a c}{V} \frac{1}{e^{\frac{Q}{V t}}-1}
\end{aligned}
$$

$$
=1.087 \frac{a c}{V} \frac{1}{e^{\frac{a L}{U t}}-1}
$$

b)

$$
\begin{aligned}
& t=0 \Rightarrow \frac{d L}{d t}=\infty \quad \operatorname{sinct}\left(e^{\left.\frac{q \varphi}{4 V}-1\right)\left.\right|_{t=0}=0}\right. \\
& t=\infty \Rightarrow \frac{d L}{d t}=0 \quad \operatorname{sinct}\left(\left.e^{\left.\frac{q 4}{4 t}-1\right)}\right|_{t=\infty}=\infty\right.
\end{aligned}
$$

c)

$$
\begin{aligned}
& D=\frac{d I t}{d t} \\
& 1.0 s 7 a c=\frac{1.087 a c}{v} \frac{1}{e^{\frac{q C}{4 v}-1}} \\
& \Rightarrow e^{\frac{2 c}{d v}}=2 \\
& \frac{a c}{4 v t}=\ln 2 \\
& t=\frac{4 v}{a c} \ln 2 \\
& \\
& =\frac{v}{a c} \times 2.76
\end{aligned}
$$

$$
\begin{aligned}
& \text { 14.3) } \quad L=6 \mathrm{er} \\
& W=9 \text { FT } \\
& h=8 p q \\
& \text { a) } f=2 \times 10^{3} \mathrm{~Hz} \\
& d=0.02 \\
& W=7.5 \times 10^{-6} \\
& p_{\infty}^{2}=\frac{4 w_{1}=6}{a!} \\
& a_{1 k_{S}}=\sum Q_{i} S_{i} \\
& \because a \sum s_{i} \\
& =\alpha(2 \times 6 \times 7+2 \times 6 \times 8+2 \times 7 \times 8) \mathrm{FT}^{2} \cdot \frac{9.2 .9 \times 10^{-2} \mathrm{~m}^{2}}{\mathrm{Ft}^{2}} \\
& =\left(2 \times 10^{-2}\right)\left(9.29: 10^{-2}\right)(84+96+112) \\
& =\left(18.58 \times 10^{-4}\right)\left(2.92 \times 10^{2}\right) \\
& =54.2 \times 10^{-2} \\
& =0.542 \\
& p_{00}^{2}=\frac{4\left(7.5 \times 10^{6}\right)\left(4.15 \times 10^{2}\right)}{0.542} \\
& =250 \times 10^{-4} \\
& =2.5 \times 10^{-2} \\
& \Rightarrow P_{\infty}=0.158 \frac{\mathrm{NT}^{2}}{\mathrm{~m}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =20 \log 107.95 \times 10^{3} \\
& =20(3.90) \\
& =78 \mathrm{db}
\end{aligned}
$$

$$
\begin{aligned}
& \text { QSPL } \quad 20 \log \operatorname{LO}_{\infty} P_{\infty} \\
& S P L=5 P L 2-3=20 \log \quad P_{0} P_{0}=20 \log \frac{P_{0}}{P_{0}}-3 \\
& 10 \log 10\left(\frac{P_{\infty}}{P_{0}}\right)^{2}-3=10 \log \cdot\left(P_{P_{0}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 10 \log \frac{4 p_{0} c}{p_{0} a}-3=10 \log _{10} \operatorname{liwh}_{p_{a}}+10 \log 10\left(1-e^{-q c t} 4 \mathrm{t}\right) \\
& -3=10 \log 10\left(1-e^{0 . g t}+\right) \\
& 10^{-0.3}=1-e^{-95 t} \\
& e^{-\frac{95}{1 v} t}=1-10^{-0.3} \\
& -\frac{a c}{4 v}=\operatorname{Ln}\left(1-10^{-0.3}\right) \\
& t=-\frac{1 v}{a c} \ln \left(1-10^{-0.3}\right) \\
& 10^{0.3}=2.00 \\
& \therefore t=\frac{4 y}{a c} \ln (0.5) \\
& =\frac{4 v}{a c} \text { Qn }(2.0) \\
& =\frac{4 \times 3.36 \times 10^{2} \times 2.83 \times 10^{-2} 40.693}{(0.42)\left(3.43 \times 10^{2}\right)} \\
& =1.41 \times 10^{(0.542)(3.43 \times 2} \mathrm{sEC} \\
& 11^{-1}
\end{aligned}
$$

c) Assuat tom
 $P_{1}^{2}=\frac{4 w p_{1} c}{a_{1}}$ $p_{2}^{2}=\frac{4 w p_{2}}{q_{2}}$
$a_{1}=\left(2 \times 10^{-2}\right)\left(2.92 \times 10^{2}\right)$
$=5.84$ SABNS
$5 D,-5 P L_{2}-3$

$10 A_{0} \frac{1}{\beta_{2}^{2} p_{0} c} 4 w p_{a}-10 \operatorname{lag}_{10} \frac{1}{h^{2}} \quad 4 a_{0} c=3$

$10 \log _{10} a_{2} / a_{1}=3$
$\operatorname{tag}_{\infty} a_{a}=0,3$
$a_{2} / a,=10^{0.3}=2.00$
$a_{2}=2 a_{1}$
$\Rightarrow a=a=a_{2}=a_{1}=5.84 \operatorname{sABIN}$
14.4) $\begin{aligned} & l=10 \mathrm{~m} \quad \mathrm{SABNS} \\ & \alpha=0.1 \quad \frac{\mathrm{SAB}}{\mathrm{f}} \mathrm{E}\end{aligned}$
a) $a=0.1 \frac{\text { Sneine }}{15} \times 2(10 \times 10+10 \times 4+10 \times 4) \mathrm{m}^{2}$

$$
=0.1 \times 360 \frac{\operatorname{SARN} \mathrm{~m}^{2}}{T^{2}}
$$

$$
=36 \times 10.76 \mathrm{FI}^{2} \text { SABIA } \mathrm{m}^{2}
$$

$$
=388 \text { 5ABM }
$$

$$
V=400 \mathrm{~m}^{3} \times \frac{35.3+t^{3}}{\mathrm{~m}^{3}}
$$

$$
=1.41 \times 10^{4} \mathrm{ft}^{3}
$$

$$
T=\left(4.9 \times 10^{2}\right)\left(141 \times 10^{4}\right)
$$

$$
=1.78 \mathrm{sec}
$$

b) $S P L=60 \mathrm{db} R$ R $2 \times 10^{-4} \mathrm{MCnOBAR}=P_{0}$

$$
S P L=10 \log 10\left(P / P_{0}\right)^{2}
$$

$$
p_{\infty}^{2} 4 W p_{0} c
$$

$$
S P L=60=10 \log _{4 W D_{0} C} H_{1} W_{0} c
$$

$$
1 / 6=\log 10 \frac{4 p_{0}^{2} p_{0} c}{1 / 2}
$$

$W=\frac{P_{0}^{2} a}{4 p_{0} c} 10^{1 / 6}$
$a_{\text {MKS }}=3.88 \times 10^{2} \times \frac{1 \mathrm{~m}^{2}}{10.76 \mathrm{ft}^{2}}$
$=36.0$
$P_{0}^{2}=\left(2 \times 10^{-4} \text { microbar } \times \frac{10^{-1 N T} / \mathrm{m}}{\mathrm{MICROBAR}}\right)^{2}$
$=4 \times(\sqrt{-6})\left(\frac{N T}{M^{2}}\right)^{2} \quad 4 \times 10^{-10}$
$W=\frac{(4 \times 10-6)(36.1)\left(1.47010^{6}\right.}{4\left(4.15 \times 10^{2}\right)}$

$$
=0.128 \text { MHATHS }
$$

14.6) $h=10^{\circ} \quad w=20^{\circ} \quad t=30^{\circ}$

$$
\begin{aligned}
& \text { 食 } \\
& \text { WALLS: } \bar{\alpha}=0.05 \\
& \text { Floor: } a=0.2 \\
& \text { GIELNE: } \alpha=0 . b \\
& \text { PEOPLE: } a_{p} 4.5 \text { SABINS } \\
& \text { a) } T=\frac{\left(4.9 \times 10^{-5}\right)(v)}{a} \\
& a_{n} \sum \alpha_{i} S_{i} \\
& a_{\text {WALS }}=0.05 \times 2(10 \times 20 \div 10 \times 30) \\
& =30^{\text {5ABMS }} \\
& a_{\text {FLOM }}=0.2 \times 30 \cdot 20 \\
& =120 \\
& a_{\text {CIELNG }}=0.6 \times 30 \times 20 ; a_{\text {PEOPLE }}=10 \times 4.5=45 \\
& \because 360 \\
& \therefore a=50+120+360+45=575 \text { SABNS } \\
& V=10 \times 20 \times 30=6 \times 10^{3} \mathrm{ft}^{3} \\
& T=\frac{\left(4.9 \times 10^{-2}\right)\left(6 \times 10^{3}\right)}{575 \times 10^{2}} \\
& T=5.75 \times 10^{2} \\
& =0.512 \mathrm{sEc}
\end{aligned}
$$

b)

$$
\begin{aligned}
& T=4.9815^{-2} 4 \\
& S=2(10 \times 20+10 \times 30+20 \times 30) \\
& =2.20 \cdot 10^{3} \mathrm{ft}^{2} \\
& \bar{x}=\frac{1}{5} \leq S_{i} \alpha_{i} \\
& =\frac{9}{5} \\
& =\frac{5.75 \times 10^{2}}{2.20 \times 10^{2}} \\
& =0.261 \\
& \operatorname{Ln}(1-\bar{\alpha})=\operatorname{dr}(0.739) \\
& =\ln (1.354) \\
& =-0.303 \\
& \Rightarrow T=\left(4.2 \times 10^{2}\right)\left(6 \times 10^{3}\right) \\
& =0.4 / 2 \sec
\end{aligned}
$$

$$
\begin{aligned}
& 4.9 \times 10^{-2} \mathrm{~V} \\
& \text { c) } T=\Sigma-s_{i} \ln ^{2}\left(1-a_{i}\right) \\
& a=E-S_{i} \ln \left(1-a_{i}\right) \\
& \text { OWALCS }=-10^{3} \ln (1-0.05) \\
& =-10^{+3} \ln _{2}(0.95) \\
& =10^{3} \mathrm{dm} 1.0526 \\
& =0.0513 \times 10^{3} \\
& =51.3 \\
& a_{\text {flon }}=-6 \times 10^{2} \text { An (0.b) } \\
& =6 \times 10^{2}(\ln 1.25) \\
& =6 \times 10^{2}(0.223) \\
& =1.34 \times 10^{2} \\
& =134 \\
& \text { achane }^{=}-6 \times 10^{2} \operatorname{An}(0.4) \\
& =+6 \times 10 \text { et } 2.5) \\
& =6 \times 10^{2}(0.916) \\
& =55.0 . \\
& a_{\text {peane }}=45.0 \\
& \text { 之a=285.279 } \\
& \Rightarrow T=\frac{4.9 \times 10^{-2} \times 6 \times 10^{3}}{2.05 \times 10^{2}}=38 \\
& -1.035 E C
\end{aligned}
$$

Q - effulwe covel en calco naro lema for dead rown
14.8)

$$
\begin{aligned}
& w=h=l=10^{\prime} \Rightarrow V=10^{3} \\
& T=\frac{4.9 \times 10^{-2} V}{a} \quad \geqslant a=\sum \alpha_{i} s_{i}
\end{aligned}
$$

$$
\alpha_{e}=-\ln \left(1-k_{2}\right)
$$

Fon acruste pradein at 125 hed

$$
\dot{X}_{e}=-\ln (1-16)=.17
$$

For chapt

$$
\alpha_{i}=e^{\alpha e}+1
$$

Acoustic plaster

$$
\begin{array}{lll}
10^{2} & 0.50 & 2.65 \\
4 \times 10^{2} & 0.50 & 2.65 \\
10^{2} & 0.37 & 2.45
\end{array}
$$

0.11
2.12
0.27
2.31
a) $f=500 \mathrm{~Hz}$

$$
\begin{aligned}
& a=(2.65+4 \times 2.65+2.45) \times 10^{2} \\
&=15.7 \times 10^{2} \\
& T=\frac{\left(4.9 \times 10^{-2}\right)\left(10^{5}\right)}{1.5 \times 10^{3}}=3.26 \times 10^{\circ 2} \mathrm{SEC}
\end{aligned}
$$

b)

$$
\begin{aligned}
& f^{500}=250+8 \\
& a=(2.35+4 \times 2.17+2.12) \times 10^{2} \\
& =(4.47+8.68) \times 10^{2}=13.15 \times 10^{2} \\
& T_{250}=\frac{\left(4.9 \times 10^{2}\right.}{1.315 \times 10^{3}}=3.73 \times 10^{-2} \mathrm{sEc}
\end{aligned}
$$

c)

$$
\begin{aligned}
A & =20004 \\
a & =(2.74+4 \times 3.2 .3+2.31) \times 10^{2} \\
& =(5.054292) \times 10^{2}=17.97 \times 10^{2} \\
T_{2000} & =\frac{\left(4.9 \times 10^{2}-2 \times 10^{3}\right.}{1.8 \times 10^{3}}=2.72 \times 10^{-2} \mathrm{sEc} \\
& T(\times 10)
\end{aligned}
$$

$$
a=\sum S_{i} \alpha_{a_{n}}
$$

$$
\begin{aligned}
& \text { 14.14a) } T=\frac{4.9 \times 10^{-2}}{a+4 m} V \quad ; \quad f=6 \times 10^{3} \mathrm{H} \\
& \frac{1}{T}=\frac{a+4 m V}{4.9 \times 10^{\circ} V} \\
& =\frac{9}{4.9 \times 10^{2}} v+\frac{4 \mathrm{na}}{4.9 \times 10^{\circ}} \\
& \Rightarrow \frac{1}{T}-\frac{4 m}{4.9 \times 10^{-2}}=\frac{a}{4.9 \times 10^{2} \mathrm{VV}} \\
& \text { AND } \frac{1}{T} \cdot \frac{4 \mathrm{~m}^{\circ}}{4.7 \times 10^{-2}} \frac{9}{4.9 \times 10^{-2} \mathrm{~V}}
\end{aligned}
$$

CSMBINING:

$$
\begin{aligned}
& \frac{1}{T}=4 m \times 10^{-2}=\frac{1}{7}=\frac{4 m}{4.9 \times 10^{-2}} \\
& \frac{4 m}{4.9 \times 10^{-2}}=\left(\frac{1}{T}-\frac{1}{T}\right)+\frac{4 m}{4.9 \times 10^{-2}} \\
& m=\left(\frac{1}{4}=\frac{1}{7}\right)+m
\end{aligned}
$$

b) Ban TABLE 9.1

$$
\begin{aligned}
& \alpha=f^{2}\left(2.0 \times 10^{-11}\right) \\
& =\left(6 \times 10^{3}\right)^{2}\left(2.0 \times 10^{-11}\right) \text { NEPER/M } \\
& =72 \times 10^{-5} \text { NEBER/M } \\
& \begin{aligned}
m=20 & =144 \times 10^{m} / m \\
& =1.44 \times 10^{m} / m
\end{aligned} \\
& \begin{array}{c}
=0.439 \times 10^{-2}=4.9 \times 10^{-2}\left(\frac{1}{5}-\frac{1039}{20}\right)+104.39 \times 10.4
\end{array} \\
& =1.225 \times 10^{-2}(0.20-0.05)+4.39 \times 10=4 \\
& =1.225 \times 10^{-2} \times 0.15+4.39 \times 10^{-4} \\
& =1.84 \times 10^{-2}+4.93 \times 10^{-4} \\
& =2.33 x+0^{-3} 177
\end{aligned}
$$

$$
\begin{aligned}
& \text { 14.19) } 5 \text {) } P L=74 \text { db Re } 2 \times 10^{-4} 11 \operatorname{cosen} A \\
& =20 \quad \operatorname{tag} \mathrm{~m} / \mathrm{P} \\
& \log \\
& 10 / p_{0} 3.7 \\
& P A P^{2}=\times 10^{2} \\
& P_{e}=\left(5 \times 10^{s}\right)\left(2 \times 10^{-4}\right) \\
& =1 \text { M1GROAR } \\
& W=2.8 \times 10^{-8} \frac{P^{2} V}{6} \\
& =2 \cdot 5 \times 10^{-8} \frac{(1)^{2}\left(10^{4}\right)}{2} \\
& =1.40 \times 10^{-4} \\
& \text { WA TTS }
\end{aligned}
$$

b)

$$
\begin{aligned}
& \text { SPL=64db Re 2×10 - M McronArs } \\
& =20+\operatorname{tog} \quad{ }^{\circ} e^{\prime} / P \\
& 3.2=\log _{0} \frac{D_{0}}{10}=10 \cdot 10=1.585 \times 100^{3}
\end{aligned}
$$

$$
\begin{aligned}
& P_{e}^{e}=\frac{4 w / a_{e} c}{a} \\
& \Rightarrow a^{\prime} p^{2}=a p^{2} \\
& a^{\prime}=a\left(\frac{p_{2}}{p=}\right) \\
& \text { Now } W=\frac{P^{2} Q}{4 P_{O}} \Rightarrow C=\frac{4 P G C W}{P 2} \\
& \Delta a=\left(a^{b} a\right)=\left(\frac{p}{p}\right)^{2} a-a \\
& =a\left(p_{e}-1\right) \\
& =4 p_{0} p^{2} V^{2}\left(\frac{p_{p}^{2}}{P^{2}}-1\right) \\
& =40_{0} C W\left(\frac{1}{P_{e}}-\frac{1}{P^{2}}\right) \\
& =4 \times 4.15^{\times 10^{2}} \times 1.40^{k 10^{-4}\left(\frac{1}{3.1 y^{2} \times 10^{-4}}-\frac{1}{10^{-2}}\right)} \\
& =23.3 \times 10^{-2}\left(10^{3}-10^{2}\right) \\
& =90 \times 10^{2} \times 2.3 \\
& \text { - } 2.1 \times 10^{2} \text { METRIE SAGINS }
\end{aligned}
$$

c) $W=2.8 \times \frac{p^{2} v}{T} \times 10$.

$$
\begin{aligned}
\Rightarrow r & =2.6 \times 10^{-} \quad \frac{p^{2} v}{Z V} \\
& =2.8 \times 10^{-8} \frac{(3.7)^{2} \times 10^{-2} \times 10^{4}}{1.4 \times 10^{4}} \\
& =2.0 \times 10^{-1} \\
& =0.25 E
\end{aligned}
$$

14.21) a) $\Delta f=1$ w

$$
\begin{aligned}
V & =2 \times 3+10=60 m^{3} \\
S & =2(2 \times 3+2 \times 10+3 \times 10) \\
& =2(6+20+30)=2 \times 56
\end{aligned}
$$

$$
=112 \mathrm{~m}^{2} \quad \pi s \quad ; L=4(2+3+10)=60 m
$$

$$
\Delta N=\left(\frac{4 \pi v}{c^{3}} f+\frac{\pi s}{2 c} f+\frac{L^{2}}{6 c}\right) \Delta f
$$

$$
c=343 \frac{m}{56}
$$

$$
\begin{aligned}
& \frac{4 v^{3}}{C}=\frac{4 \times \pi \times 10^{3}}{(3.43)^{3} \times 10^{6}}=1.87 \times 10^{-5} \\
& \frac{\pi s}{2 C^{2}}=\frac{\pi \times 1.12 \times 10^{2}}{23.43)^{2} \times 10^{1}}=1.5 \times 10^{-3} \\
& \frac{L}{8 C}=\frac{60}{8 \times 3.43 \times 10^{2}}=2.19 \times 10^{-2}
\end{aligned}
$$

$$
f \quad f^{2} \frac{4 \pi v}{c^{3} p^{2}} \frac{\pi s}{2 c^{2} f} \quad \frac{L}{8 c} \quad \Delta N
$$

$$
\begin{array}{llllll}
10^{2} & 10^{4} & 1.87 \times 10^{-1} & 1.5 \times 10^{-1} & 0.22 \times 10^{-1} & 0.36
\end{array}
$$

$$
2 \times 10^{2} \quad 4 \times 10^{31} \quad 7.43 \times 10^{09} \quad 3.0 \times 10^{\circ 1} \quad 0.22 \times 10^{-1} \quad 1.07
$$

$$
\begin{array}{llllll}
3 \times 10^{2} & 9 \times 10^{4} & 17.00 \times 10^{-1} & 4.5 \times 10^{-1} & 0.22 \times 10^{-1} & 2.17
\end{array}
$$

$$
4 \times 10^{2} \quad 1.6 \times 10^{5} \quad 29.9 \times 10^{-1} \quad 6.0 \times 10^{-1} \quad 0.22 \times 10^{11} \quad 3.61
$$

$$
5 \times 10^{2} \quad 2.5 \times 10^{5} \quad 46.7 \times 10^{11} \quad 7.5 \times 10^{-1} \quad 0.22 \times 10^{11} \quad 5.44
$$

$$
6 \times 10^{2} \quad 3.6 \times 10^{5} \quad 67.3 \times 10^{11} \quad 9.0 \times 10^{-1} \quad 0.22 \times 10^{11} \quad 7.66
$$

b) FROM GRAPH, $\triangle N=2$ © $S 290 H E$

[^0]: * The linear relation between the length or diameter of the wire and the force exerted on it is observed only over a limited range of forces ranging from zero to some maximum value which depends oll the diameter of the wire and the material from which the wire is made. In all that follows it is assumed that the force alway lies within this range.

[^1]: * A homogeneous substance is one whose physical properties are the same at all points of the body. An isotropic substance is one whose physical properties at a point are independent of direction.

[^2]: * The strain produced by n sets of forces acting simultaneously is the resultant of the strains produced by each set acting separately.

[^3]: * The reason for the double subscript on the stresses should now be clear. The first subscript identifies the face on which the force is acting, while the second specifies which component of the force is involved. For example, $S_{x y}$ refers to the y-component of the force acting on the face which is perpendicular to the x-axis.

[^4]: * When using equilibrium conditions to calculate the internal forces (and stresses) that arise when a block is subjected to external forces, one often ignores the distortions that are produced and calculates the internal forces as if there were no distortions. This procedure yields satisfactory results as long as the distortions (strains) are small compared to unity.

[^5]: * If one chooses the surface to be a rectangular parallelepiped whose edges are parallel with the axes of a rectangular coordinate system, then the resultant force acting on each "positive" face of the surface can be resolved into three components. Since there are three positive faces, there are nine stress components, $S_{x x}, S_{x y}$, Sxz, $S_{y x}, S_{y y}, S_{y z}, S_{z x}, S_{z y}, S_{z z}$. These nine componentsform what is called the stress tensor. The strain at a point is similarly described by nine strain components, forming what is called the strain tensor.

[^6]: * The proof that one can always find a single force and a couple whose effect as far as equilibriumris concerned is equivalent to an arbitrary set of forces, can be found in numerous texts on mechanics, e.g., Synge and Griffith, Frachespftebucs (McGraw hill, gonyut litq) 2ad ed. pso.

[^7]: and some authors omit this factor.

[^8]: * One could equally well assume that each strain component is a linear function of the six stress components.

[^9]: * A sketch showing all the forces acting on this piece of string would show in addition a gravitational force and a damping force. For any real string the magnitude of the gravitational force can be shown to be extremely small compared to T and T^{l}
 consequential. For real strings, the damping force is not negligible, since it is readily observed that a vibrating string left to itself comes to rest rather quickly. Nevertheless we will neglect the damping forces at this point in our development to keep the mathematics as simple as possible.

[^10]: * The student may recognize the right-hand sides of (3.16) and (3.17) as Fourier series representations of the functions $y_{0}(x)$ and $v_{0}(x)$.

[^11]: * Strictly speaking one can only refer to the pressure of a gas when the gas is in equilibrium, and the pressure is the same at all points. Any sudden motion of the membrane sets up a pressure wave in the air and the air attains equildbrium only after this wave is sufficiently attenuated. In treating the kettledrum, one generally assumes that at each instant the pressure of the trapped air is the pressure the air would attain if the membrane were held fixed in its position long enough for equilibrium to be established. This is a reasonable assumption if the pressure wave is attenuated in a time that is short compared to the period of vibration of the membrane.

